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Front cover: The large inclined galaxy on the cover is the nearby spiral galaxy M31 in the
constellation of Andromeda. The bright object close to the central bulge of M31
is the compact elliptical galaxy M32.

The dynamical models presented in this thesis show that M32 contains a super–
massive central black hole of 3:4� 106 solar masses (chapter 4).
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Chapter 1

Introduction

1.1 Understanding galaxies: structure, formation and subsequent evolution

GALAXIES occupy a central place in astronomy since they are the constituent bricks of the
universe. They are intermediate in size between stars and super–structures (clusters and

super–clusters of galaxies). Understanding the formation and evolution of galaxies involves
many different areas of astrophysics.

Galaxies are believed to form hierarchically in a universe dominated by dark matter: small
scale objects collapse first and successively merge into larger objects. Cosmological N–body
simulations have dramatically improved over the last few years and now have the ability to re-
solve galaxies (Evrard, Summers & Davis 1994; Navarro, Frenk, & White 1996; Moore et al. 1999
and references therein). Density profiles and shapes (Tissera & Dominguez–Tenreiro 1998) of
dark matter halos can be predicted and compared to “observations”. Dynamical modeling of
real galaxies is an essential tool in that respect, since quantities of interest are generally not
readily observable.

Better observations and larger surveys have opened new questions. For instance, the su-
perb optical capability of the Hubble Space Telescope (HST) has revolutionized (amongst other
things) our ideas about the central regions of elliptical galaxies (Crane et al. 1993; Jaffe et al. 1994;
Lauer et al. 1995; Carollo et al. 1997). These observations found that essentially all ellipticals have
central density cusps (i.e., the luminosity density approaches a power–law form �(r) / r�
 at
small radii) instead of a flat constant density core. More important, it seems that there is a
dichotomy between giant ellipticals (MB < �20:5) with shallow cusps (mean 
 � 0:8), and low–
luminosity ellipticals (MB > �22:0) with steep cusps (mean 
 � 1:9) (see Gebhardt et al. 1996).
These nuclear properties also appear to correlate with global parameters of the parent galaxy:
mean rotation and apparent shape. These correlations hint to some fundamental underlying
process. The origin of these density cusps is actively investigated by several groups. The
dynamical effect of a central massive black hole (hereafter BHs) is certainly a key ingredient
here (Gerhard & Binney 1985; Quinlan, Hernquist & Sigurdsson 1995; Merritt & Quinlan 1998;
Nakano & Makino 1999).

Several other fundamental questions regarding structure and formation of galaxies can be
summarized as follows :

– What is the distribution of intrinsic shapes in elliptical galaxies and do they correlate with
other properties such as e.g., luminosities or cusp slopes? Twenty years ago, the answer to
that question was that elliptical galaxies were triaxial as a class. Today, it is still believed
that they are triaxial systems, although probably not strongly triaxial, i.e., near–oblate or
near–prolate (Franx et al. 1991; Merritt & Tremblay 1996; Statler, Smecker–Hane & Ce-
cil 1996).

1



2 CHAPTER 1 INTRODUCTION

– What is the origin of scaling relations (Tully–Fisher or Fundamental Plane)? The Fun-
damental Plane relations for elliptical galaxies deviate slightly from what can be deduced
from the virial theorem (Pahre, Djorgovski & de Carvalho 1995). Is this tilt due to a depen-
dence of the mass–to–light ratio M/L on mass, to a difference in the dark matter content,
or to different anisotropies amongst galaxies? But whatever the origin of this deviation,
the scatter in these relations is small despite the large differences between galaxies (in
luminosity and dispersion profiles, rotational support) and needs to be explained.

– What are the effects of environment? Minor mergers or weak tidal interactions (galaxy
harassment, Moore et al. 1996) probably play a crucial role in modifying the morphology
of cluster galaxies. This may be the reason why rapid rotation is observed in the outer
regions of Cen A and NGC 1399 (a redistribution of angular momentum outwards can
occur in mergers, see e.g., Hernquist, 1993).

1.2 Massive Central Black Holes

Massive BHs have been proposed in the 60’s as the most probable source of energy for quasars
(Zel’dovich & Novikov 1964, Lynden–Bell 1969). From simple considerations on quasar number
counts and accretion efficiency, one can estimate the mean density of BHs in the universe. Chok-
shi & Turner (1992) find that �BH ' 2� 105 M�Mpc�3 for a radiative efficiency of 0.1. This result
compared to the galaxy luminosity density of 1:4� 108 L�Mpc�3 (with H0 = 100 km=s=Mpc)
implies that the mean BH mass per solar luminosity is � 1:4� 10�3 M�= L�. Therefore one
should expect that a typical bright (L� = 1010 L�) galaxy harbors a 107 M� BH.

1.2.1 How to detect Black Holes ?

The most common method to “prove” the existence of a BH is to measure the amount of mass
and light inside a sphere and then argue that no stellar population could explain it (i.e., the
required M/L would be too large for any reasonable stellar population). The mass is usually
derived dynamically: one measures velocities at a given distance from the center and essen-
tially relies on Kepler’s law to derive the enclosed mass. One can measure the kinematics of
the stars (absorption lines), or of the gas (emission lines). In practice, a number of difficul-
ties (observational and in the models) makes this approach not as straightforward as it first
seems. Alternatively the volume of the accreting material can be estimated from variability
measurements (together with light travel time arguments) and its mass can be derived from the
measured luminosity, assuming an accretion rate close to the Eddington limit.

Another method to detect BHs is to model the 6.4 keV Fe K� fluorescence emission line
of the central accretion disk. The distorted shape of this line is explained by the gravitational
redshift of the photons produced very close to the BH (Tanaka et al. 1995, Nandra et al. 1997).

1.2.2 The problems with the data

The first problem when hunting for BHs is due to the small size of the region in which the BH
dominates the gravity. This can be illustrated with the concept of the “radius of influence”,
defined as rinf = GMBH=�2 (Peebles 1972), where G is the constant of gravitation, MBH the
mass of the BH and � the central velocity dispersion of the stars. For typical values (MBH =
2 � 108 M�, � = 200 km=s) and a distance of 5 Mpc, one finds rinf = 100, which is close to the
resolution achievable from the ground, so only the heaviest BHs in nearby galaxies could be
clearly detected with ground–based telescopes. In this respect, the Hubble Space Telescope
(HST) has made a critical contribution by improving the spatial resolution by a factor � 10.
Very high resolution radio observations of water masers can be obtained with VLBI techniques
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and have demonstrated the existence of a 3� 107 M� BH in the center of NGC 4258 (Miyoshi et
al. 1995). Unfortunately, the number of galaxies with known water masers is very small.

Furthermore, only one component of the velocity can be measured (the line–of–sight veloc-
ity) so with no a priori ideas about the orbit, it is difficult to derive the full three–dimensional
motion. It can be done in the case of a “tracer” population, for which we know the dynamics,
e.g., thin cold disks are mainly made up of circular orbits.

1.2.3 The problems with the models

The second type of problem in the quest of BHs is more subtle and deals with the dynamical
modeling. It basically originates from the mass–anisotropy degeneracy: to a certain extent, one
can obtain the same results (in the velocities of the dynamical model) by changing the amount
of mass inside a given volume or by varying the anisotropy in the orbital distribution.

If a dynamical model (based solely on the luminous mass) under predicts the kinematic
data, it can be taken as an indication that some extra (dark) mass is required. But if, due to
simplifying assumptions, this model has not enough freedom in its orbital structure to fit the
data, the evidence for an additional dark mass is inconclusive, since it remains to be seen if a
change in the anisotropy (forbidden by the models) could have improved the poor fit (see an
early illustration of this problem in Binney & Mamon 1982). There are some uncertainties in the
luminous mass profile as well since it involves a deprojection (see Gerhard & Binney 1996), but
it seems to have negligible consequences for the BH search (van den Bosch 1997).

1.3 Dark Halos

Dark halos (DHs) around spiral galaxies are well established, thanks to the relative dynamical
simplicity of their extended HI disk (see e.g., Burstein & Rubin 1985). Although their existence
and, to some extent, their radial profile is well known, the situation concerning their shape
is much more sketchy (see e.g., the review by Sackett 1999). The nature of dark matter is still
unknown, though progress “by a process of elimination” seems to favor cold weakly interacting
particles over faint stars (because of their rarity in the deep HST images, see Bahcall et al. 1994;
Flynn et al. 1996) and over sub–stellar objects (because of the absence of short timescale events
in the MACHO data, see e.g., Freeman 1996).

Comparison with spiral galaxies leads to a number of questions concerning the DH of el-
lipticals: what is the size, mass, shape and extent of DHs around ellipticals, and how do they
compare to their spiral “cousins” of similar luminosity? In trying to answer these questions
and modeling these systems, essentially the same problems described in Section 1.2 occur. The
absence of a tracer population and the limited radial extent of spectroscopic data are the ma-
jor difficulties on the observational side. Usually kinematic constraints can be obtained only
within one effective radius (hereafter Reff), thus constraining at most half of the luminous mat-
ter (see e.g., Bender, Saglia & Gerhard 1994, but see Carollo et al. 1995). In the models, the
mass–anisotropy degeneracy is the main limitation to the secure detection of dark mass.

1.4 Aim of this thesis

The aim of this thesis is the study of early–type galaxies through the use of realistic dynamical
models. A substantial part of this thesis is devoted to the construction of such models, i.e., how
to use the theoretical knowledge of galaxy dynamics (theory of orbits, potential, integrals of
motion, etc) to build dynamical models of real galaxies with the least number of simplifying
restrictions.
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These models are customized such as to reproduce as well as possible real galaxies: their
luminous mass distribution fits the observed surface brightness, after projection and seeing
convolution. Pixel binning and seeing convolution are taken into account when computing the
orbit library, such as to mimic the observational setup and to reproduce the observed kinema-
tics.

The models allow to test for dark matter using the following procedure: As a first step,
one builds a model in which light is assumed to follow the mass. If no good fit to the data
can be achieved, one adds dark matter to the mass model, until a reasonable agreement with
the data is obtained. From a grid of models, we can measure quantitatively the amount of
dark mass needed. Furthermore, such models provide a (kinematically unbiased) view of the
internal structure of galaxies. These equilibrium models can also be used as starting point for
an N–body simulation to study, e.g., the stability of the model.

1.5 Galaxy Dynamics

1.5.1 Prelude

The tools and theories of galactic dynamics are used in this thesis to build dynamical models.
All the information contained in a dynamical model can be summarized into one quantity: the
distribution function (DF). It describes the density of stars over position, velocity and time. For
a physical model, this function has to be positive.

Galaxies can be considered collisionless since their relaxation time is much larger than the
age of the Universe (see e.g., Binney & Tremaine 1987). It means we can safely ignore the granu-
larity of the potential of the galaxy due to individual stars and compute orbits in a smooth force
field. In such a system, the distribution function f = f (x;v; t) satisfies a continuity equation,
called the Boltzmann equation @ f@t

+ v � r f �rΦ � @ f@v
= 0: (1.1)

If the DF does not depend explicitly on time (@ f=@t = 0), then the model is said to be steady–
state or stationary. From Newton’s law of gravitation, one can deduce the so–called Poisson
equation that relates the density to the potential (see page 31–32 of Binney & Tremaine 1987),

4�G�(x) =r2Φ(x); (1.2)

where G is the constant of gravitation.
By definition, the density is the integrated DF over all velocities:�(x) = Z Z Z

f (x;v) dv: (1.3)

If the stellar orbits in the gravitational field Φ(x) can be populated such as to reproduce the cor-
responding density (obtained by solving Poisson equation), then the model is self–consistent.
Models with dark matter do not satisfy equation (1.2) and are not self–consistent. The rele-
vance of self–consistent models to real galaxies should not be overemphasized, since probably
most of the mass of the universe is dark. When applied to real galaxies, such models are con-
structed primarily to test if the luminous mass can account for the observed kinematics with
a reasonable mass–to–light ratio ϒ . If such luminous models fail to do so, we can rule them
out. Subsequently, stellar & dark models are built to study the amount of dark mass needed to
match the data.
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Solving for the DF with the Poisson and Boltzmann equations is a difficult mathematical
(and computational) problem, since in general phase–space has six dimensions. The Jeans’
theorem helps in reducing the dimensionality, because it states that the DF depends on the six
phase–space coordinates x and v only through the isolating integrals of motion (Lynden–Bell
1962): there are at most three such integrals, but in general they are not all known analytically.

For mathematical convenience, dynamical models with simple choices of DF have been con-
structed. For instance in the axisymmetric case, two–integral DFs have become popular, since
they can now be constructed for any type of density profile (Hunter & Qian 1993; Dehnen &
Gerhard 1994; Qian et al. 1995; Merritt 1996).

If one specifies only the mass distribution, many different DFs (corresponding to different
kinematic behaviors) can be found that self–consistently generate the input density profile (see
e.g., Pfenniger 1984). Including kinematic constraints greatly helps in reducing the solution
space.

1.5.2 Velocity Profiles

The distribution of line–of–sight velocities of the stars can be derived from the absorption lines
of the integrated light spectrum. These lines are broadened by the Doppler shift due to the mo-
tion of stars. This velocity distribution is called Velocity Profile (VP) or Line–Of–Sight Velocity
Distribution (LOSVD). The VP is of great importance, since it is the observable part of the DF,
i.e., the DF integrated over the quantities that are not accessible to observers : velocities vx0 and
vy0 in the plane of the sky (x0; y0), and position along the line–of–sight z0. At a given position
(x0; y0), the distribution of stars as function of the line–of–sight velocity vz0 is given by

VP(x0;y0;vz0) = Z Z Z
DF(x;v) dvx0 dvy0 dz0: (1.4)

In the past, VPs were assumed to follow a gaussian shape and only the first two moments of
the distribution were measured. More efficient detectors and better algorithms (see e.g., Rix
& White 1992; van der Marel & Franx 1993) allow to derive the full shape of the VP. Even if in
practice the VPs are close to gaussians, there are no theoretical reasons to believe they are exactly
gaussian. In fact, these deviations from perfect “gaussianity” contain important dynamical in-
formation about the galaxy. Because of their close relation to the DF (equation 1.4), VPs reflect in
their shape the degree of anisotropy of the galaxy (Dejonghe 1987; Winsall & Freeman 1993). In
the spherical case, Gerhard (1993) has shown that the knowledge of high–order moments of the
VP could break the so–called mass–anisotropy degeneracy: increasing the mass inside a sphere
of radius r, and/or varying the amount of anisotropy in such a sphere leaves specific signatures
on the VP shapes, therefore suggesting the possibility to disentangle the two processes.

1.5.3 The tools of the galactic dynamicist

To construct a dynamical model, one can resort to various analytic and numerical methods. In
this Section, we briefly describe the weak and strong points of the most relevant ones. Below, we
have attempted to organize these tools in increasing complexity/capability order, although they
are best understood as complementary. Orbit–based models “à la Schwarzschild” are described
separately in Section 1.5.4.

1. Theory of orbits: In a galaxy model, it is worth studying the family of stable periodic orbits
since they provide a first–order approximation of the dynamics. These orbits constitute
the backbone of the galaxy because stars are trapped on quasi–periodic orbits around
them. Chaotic orbits tend to cluster around instable periodic orbits (for periodic orbits
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studies, see e.g., Contopoulos & Papayannopoulos 1980; Martinet & de Zeeuw 1988; Mar-
tinet & Udry 1990; Pfenniger & Friedli 1991). Non–intersecting closed periodic orbits are
interesting because they describe gas motions.

However, the periodic orbit approach ignores collective effects since each periodic orbit
(and in particular, its stability) is studied individually in the gravitational field of the
model. One example of such collective mode is the buckling of (N–body) bars: thin bars
can bend into a V shape (Raha et al. 1991; for further references on collective instabilities,
see Section 6 of Merritt, 1999).

2. Separable models: For these models, all integrals of motion are known analytically, which
greatly helps in the construction of dynamical models since the orbital densities can be
calculated explicitly (de Zeeuw 1985; Statler 1987). These special potentials support only
regular motion. They display a variety of shapes (de Zeeuw, Peletier & Franx 1986) but
can not model accurately the central regions of low–luminosity elliptical galaxies (with
steep density cusps).

3. Jeans models: A partial description of the kinematics of a galaxy can be obtained by solv-
ing the Jeans equations. In practice, low order moments of the velocity ellipsoid can be
derived only when some symmetry is imposed (spherical or axisymmetric) and when
special restriction are made on the kinematics (such as assuming that the DF depends on
two integrals only). Fillmore, Boroson & Dressler (1986) and Kent (1989, 1992) modeled
the bulges of spirals using this Jeans technique. With the same type of models, Binney,
Davies & Illingworth (1990), van der Marel, Binney & Davies (1990) and van der Marel et
al. (1994) concentrated on elliptical galaxies. The major limitation of this approach is that
the Jeans solutions are not guaranteed to be physical, i.e., the corresponding DF may not
be positive everywhere.

4. Basis function DF: Here, the DF is expressed as a weighted sum of suitable basis functions.
The required analytic knowledge of all the integrals of motion limits the applicability of
this approach to separable potentials (Dejonghe 1989, Robijn & de Zeeuw 1996), or to
potentials for which an approximate integral exists (Matthias & Gerhard 1999, see also
Emsellem, Dejonghe & Bacon 1999). If all the integrals of motion are not known analyt-
ically, this approach can still be used to build simpler (less general) models, where one
assumes that the DF depends only on one or two integrals (as in the Jeans approach).
The axisymmetric two–integral models presented in Chapter 3 of this thesis assume that
the DF of each component is proportional to delta functions in the two known integrals
of motion, energy E and vertical angular momentum Lz. The proportionality factors are
then computed numerically through a least–square minimization.

5. N–body models: In such models, the force exerted on each particle is computed numeri-
cally from the contribution of all the other particles (i.e., the models are self–consistent by
construction). These models are fully general (3D and no restriction placed on the velocity
ellipsoid) and can be used to study the secular evolution of isolated galaxies (Friedli 1999)
or galaxies in interaction (Barnes 1996). The properties of N–body models are directly
accessible (e.g., density profile, ellipticity, velocity anisotropy). The number of particles
is limited by the available computer resources, so in practice it is still small (<� 106�7)
compared with the number of stars in galaxies (1011). Furthermore N–body models are
difficult to customize to represent a particular galaxy, i.e., with a given density profile or
shape: usually, these models relax to a stable configuration that is different from the initial
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one (see e.g., Udry 1993). Syer & Tremaine (1996) devised a hybrid method that merges the
N–body and the Schwarzschild approaches (Section 1.5.4) to overcome these difficulties.

Observations can hardly be considered as a “tool of the dynamicist”, but nevertheless they
constitute essential constraints for analytical and numerical dynamical models.

1.5.4 Schwarzschild models: a historical perspective

In the so–called Schwarzschild method, a large library of orbits is computed in a fixed potential
(corresponding to the deprojected luminous density through Poisson’s equation). During the
numerical integration of the equations of motion, we store the orbital properties on various
grids: projected and intrinsic density, VPs and lowest order velocity moments of each orbit.
The gravitational contribution of some additional dark mass can be included in the total mass
model. The orbits are combined with weights, such as to fit the input model density and a
set of kinematic constraints. The Schwarzschild models allow for arbitrary geometry and put
no a priori condition on the degree of anisotropy. Furthermore they do not require an analytic
knowledge of the integrals of motion. They can be made–to–measure for the study of individual
objects, such as the various applications developed in this thesis. By construction, this type of
model is unable to address secular evolution.

This method for constructing dynamical models is relatively young, so it is possible to make
an exhaustive list of the various Schwarzschild models built in the last twenty years. In this
section, we will focus on axisymmetric and triaxial models only.

Axisymmetric models

Richstone (1980, 1982, 1984) constructed scale–free oblate models in a self–consistent logarith-
mic potential (�(r) / r�2). Levison & Richstone (1985a, 1985b) explored more realistic lumi-
nous densities (�(r) / r�3) in the logarithmic potential (non self–consistent models). Bishop
(1986) constructed three–integral axisymmetric models in a separable Kuzmin potential (1956).
Fillmore & Levison (1989) did a survey of highly flattened oblate models following a de Vau-
couleurs’ surface brightness profile, using self–consistent and logarithmic potentials.

In this thesis, we present several applications of an axisymmetric three–integral implemen-
tation of the Schwarzschild method (see Section 1.4). An important feature of our method is
that we calculate and fit the full VP shapes, represented by a Gauss–Hermite series. In a paral-
lel effort, Gebhardt and collaborators have developed a similar machinery and have applied it
to NGC 3379 (Gebhardt et al. 1999), NGC 3377, NGC 4473 and NGC 5845.

Triaxial models

Most of the triaxial models have been constructed for self–consistency studies (with the excep-
tion of the Galactic bar models). Schwarzschild built his original models (1979, 1982) to establish
the existence of triaxial equilibrium figures. Statler (1987) computed self–consistent models of
the “perfect” (triaxial) ellipsoid (for a full account on these integrable models, see de Zeeuw
1985). Statler’s models are composed of four orbit families described in Kuzmin (1973) and
de Zeeuw (1985): they are precisely the same four major orbit families constituting the non–
rotating triaxial Schwarzschild (1979) models. Levison & Richstone (1987) used a logarithmic
potential with a finite density core and found a large set of possible solutions.

Kuijken (1993) studied scale–free non–axisymmetric disks and found that only models with
an axis ratio larger than 0.7 could be self–consistently reproduced. When the model isodensity
contours are made more boxy, it is even harder to reach self–consistency. Syer & Zhao (1998)
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did a similar study using the separable scale–free disks models of Sridhar & Touma (1997).
They found that no choice of the surface density slope would permit the construction of a self–
consistent model. Schwarzschild (1993) extended the Kuijken study to three dimensions. When
he excluded the stochastic orbits, he could only make self–consistent the nearly spherical mod-
els (c=a >� 0:5, where a and c are the principal axis of the density, see his equation [2.5]). Merritt
& Fridman (1996) explored non scale–free triaxial models with weak and strong cusps. Both
cases could be made self–consistent if the stochastic orbits were treated like the regular ones. If
only regular orbits are considered, no solution was found for either cusp slope. Merritt (1997)
extended his previous study (with strong cusp) to a whole grid of axis ratios. He found that only
nearly axisymmetric models could be reproduced when only the regular orbits were included
(see his Figure 1). Siopis (1999) confirmed the weak cusp results of Merritt & Fridman (1996),
i.e., no models could be made self–consistent if the fully mixed chaotic orbits are included. He
showed further that a self–consistent solution with chaotic orbits could be found only in the
inner regions (containing at most 65 per cent of the mass).

Zhao (1996) and Haefner et al. (1999) have constructed triaxial orbit models for the Galactic
bar. Zhao found that as much as 40 per cent of the mass could be attributed to “collective orbits”
or “components”, representing fully mixed stochastic orbits (see Section 1.5.5).

One main goal of the Schwarzschild models adapted to real galaxies has been to infer the
mass distribution (luminous and dark) from a set of photometric and kinematic data. In this
thesis, two “distributions” of dark matter have been considered: super–massive central BHs
and extended dark halos. But in principle, the study and construction of full DFs is possible
(Haefner et al. 1999).

1.5.5 Improvements of the Schwarzschild method

Chaotic orbits and components

The treatment of stochastic orbits in the Schwarzschild models poses a numerical and concep-
tual problem. Some non–regular orbits may need a very long time to reach a well–mixed state.
Thus one should numerically integrate such orbits until the level of secular fluctuations has
decreased below some (small) threshold, which requires a large amount of CPU time. If we
include such orbits before they have converged, we may expect the final model to evolve with
time, in conflict with the steady–state hypothesis. Merritt & Valluri (1996) propose to average
different stochastic orbits at the same energy, to obtain what they call “fully mixed solutions”.
Merritt (1997) simply chooses to exclude entirely these orbits to guarantee the stationarity of
the model. Nevertheless, it is not clear quantitatively how much the model will evolve (and
on what time–scale) due to these stochastic orbits (but see Schwarzschild 1993 for a first step in
that direction).

Another way of dealing with “difficult offsprings” in the Schwarzschild method is to com-
pute analytically the kinematic properties of components (instead of orbits), for which the DFs
are delta–functions of the analytically known integrals of motion. For instance, Zhao (1996)
constructed f (E)–components depending only on the energy E in a triaxial potential (see also
Haefner et al. 1999). These components are useful since they are time–independent (by construc-
tion), they include all the orbits (stochastic and regular) having that energy E and are smoother
than conventional orbits. In chapter 3 we describe axisymmetric f (E; Lz)–components. In a
self–consistent model, the components can be used in conjunction with regular (numerically
integrated) orbits.

In the case where all integrals are known analytically (separable model), orbital properties
can be calculated using the same ideas, i.e., the orbital DF can be expressed as a triple delta–
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function over the integrals E; I2; I3 (see e.g., eq. [A15] of Lake & Norman, 1983). In that case,
these f (E; I2; I3)–components are equivalent to numerically integrated orbits. As already men-
tioned in Section 1.5.4, this property facilitates the construction of self–consistent models for
this kind of potential (see e.g., Bishop 1986; Teuben 1987; Statler 1987).

Spectral dynamics

One can avoid the discretization of space with the help of spectral dynamics. Each regular orbit
is fully characterized by a few numbers (amplitudes and frequencies) and the orbits are ex-
pressed as truncated Fourier series (Papaphilippou & Laskar 1996, Carpintero & Aguilar 1998).
No grid is necessary to store the individual orbital quantities, because they can be quickly
computed from the series expansion. These ideas can be advantageously incorporated into
Schwarzschild models since orbital VPs can also be written down explicitly (Copin 1998).

Made–to–measure N–body models

As we mentioned earlier, the Syer and Tremaine (1996) algorithm, combining advantages of the
Schwarzschild and the N–body approach seems a very promising avenue.

1.6 Outline and Summary

1.6.1 The dark halo of NGC 2434

In chapter 2 of this thesis, we describe the spherical implementation of our dynamical modeling
technique, based on Schwarzschild’s orbit superposition method. A representative library of
orbits is calculated and the non–negative superposition of these orbits is determined that best
fits a given set of observational constraints. We calculate and fit the full velocity profile shapes,
represented by a Gauss–Hermite series. This allows us to constrain the orbital anisotropy in the
fit. Using �2 statistics, we assess the relative likelihood of different orbit combinations in a given
potential, and of models with different potentials. Aperture binning and seeing convolution of
the data are properly taken into account, and smoothness of the models in phase–space can be
enforced through regularization.

As an application, we modeled the E0 galaxy NGC 2434, for which we have extended VP
measurements (up to 2.5 Reff, Carollo et al. 1995). First, models with no dark mass are clearly
ruled out by the data: no value of the stellar mass–to–light ratio can be found to fit simultane-
ously all the kinematic data. Using cosmologically motivated dark halos, we show that roughly
half the mass inside one Reff must be dark and the rotation curve of this best fit model is flat for
radii in 0:3 < R=Reff < 3, in particular there is no special feature at the transition radius from
light–dominated to dark–dominated region. One could have expected a more centrally peaked
rotation curve, since L�–elliptical galaxies are much denser than L�–spirals. We find a best fit
model for vc ' 300 km/s, which means that the DH around NGC 2434 is more massive than for
a typical L�–spiral.

1.6.2 Axisymmetric three–integral dynamical models

In chapter 3, we focus on the axisymmetric implementation of our modeling technique. As in
the spherical case (chapter 2), our method originates from Schwarzschild’s orbit superposition
technique, with the inclusion in the models of the full VPs. We first show how to build galaxy
models from individual orbits. This provides a method to build models with fully general DFs,
without the need for analytic integrals of motion, which is the main strength of this technique.
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We then discuss a set of alternative building blocks, the two–integral and the isotropic compo-
nents, for which the observable properties can be computed analytically. Models built entirely
from two–integral components yield DFs of the form f (E; Lz), which depend only on E and Lz.

We have tested our method, by using it to reconstruct the properties of a two-integral model
built with independent software. The test model is reproduced satisfactorily, either with the
regular orbits, or with the two–integral components. This chapter mainly deals with the techni-
cal aspects of the method, while applications to the galaxies M32, NGC 4342 and NGC 2320 are
described in chapter 4, 5 and 6.

1.6.3 Black holes in M32 and NGC 4342

In chapter 4 of this thesis, we model the compact elliptical M32 and show that it must contain
a 3:4� 106 M� central dark mass. The central density exceeding 108 M�pc�3 rules out clusters
of stellar remnants or a variation in the stellar population as alternative explanations to a BH
for the central object. The models can be fully anisotropic, but it appears that even maximally
radially anisotropic models can not fit the data without a BH (in particular, the central velocity
dispersion). The best fitting model (with a BH of 3:4� 106 M�) has a velocity structure rea-
sonably similar to a two–integral model. This is probably why such simplified models could
predict roughly correctly the BH mass (Qian et al. 1995). The peculiar velocity structure of M32
may have been caused by the central BH (see e.g., Merritt & Quinlan 1998). We find furthermore
that such a BH is consistent with the predictions of models in which the BH grows adiabatically
into a preexisting core.

In chapter 5, we apply our modeling technique to the S0 galaxy NGC 4342 and find that it
contains a 3� 108 M� BH. Again radially anisotropic models can be ruled out and the best fit
dynamical structure resembles a two–integral model. The ratio of BH mass to bulge mass is 2.6
percent, one of the highest known amongst galaxies with suspected BHs (Magorrian et al. 1998,
van der Marel 1999).

1.6.4 The internal dynamics of NGC 2320

In chapter 6, we present direct observational constraints on the internal velocity distribution of
the giant elliptical NGC 2320. Spectroscopic data within one Reff along multiple position angles
is used to derive the line–of–sight velocity distribution, quantified by the Gauss–Hermite mo-
ments. In addition, the gas rotation curve and dispersion profile are measured from the [OIII]
emission lines. After correcting for the asymmetric drift, we calculate the circular velocity of the
gas, which provides an independent constraint on the normalization of the gravitational poten-
tial. As described in chapter 3, we construct dynamical models to interpret the stellar motions.
We consider models in which the mass follows the light (i.e., no dark matter) and models with
a logarithmic gravitational potential. Using �2–statistics, we combine the stellar and gas data
to constrain the value of the mass–to–light ratio ϒV (in the V–band). We find ϒV = 15:0� 0:6 h75

for the mass–follows–light models and ϒV = 17:05 � 0:7 h75 for the logarithmic models. For
the latter, ϒV is defined as the mass enclosed within 1500 divided by the total amount of light
in the same volume. Radially constant ϒV models (without dark matter) and logarithmic mod-
els (with dark matter) provide comparable good fits to the data and possess similar dynamical
structure. For the full range of ϒV permitted by the observational constraints, the models are ra-
dially anisotropic along the major axis in the interval meaningfully constrained by the kinemat-
ical data (100 <� r <� 4000). Along the symmetry axis, they are more nearly isotropic. We explore
the uncertainties associated with the anisotropy profiles by examining the formal 3�–range of
models around the best fitting ϒV .
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Chapter 2

The Dark Halo Around the Elliptical Galaxy
NGC 2434

Rix, H.–W., de Zeeuw, P. T., Cretton, N., van der Marel, R. P., Carollo, C. M.
1997, ApJ, 488, 702

We describe a powerful technique to model and interpret the stellar line-of-sight velocity profiles of
galaxies. It is based on Schwarzschild’s approach to build fully general dynamical models. A rep-
resentative library of orbits is calculated in a given potential, and the non-negative superposition of
these orbits is determined that best fits a given set of observational constraints. The most significant
new feature of our implementation is that we calculate and fit the full velocity profile shapes, repre-
sented by a Gauss-Hermite series. This allows us to constrain the orbital anisotropy in the fit. We also
use an objective �2 measure for the quality-of-fit, taking into account the error on each observational
constraint. Given �2 from the observational constraints, the technique assesses the relative likelihood
of different orbit combinations in a given potential, and of models with different potentials. In our im-
plementation only projected, observable quantities are included in the fit, aperture binning and seeing
convolution of the data are properly taken into account, and smoothness of the models in phase-space
can be enforced through regularization. This scheme is valid for any geometry.

In a first application of this method, we focus here on spherical geometry; axisymmetric modeling is
described in companion papers by Cretton et al. and van der Marel et al. We test the scheme on pseudo-
data drawn from an isotropic Hernquist model, and then apply it to the issue of dark halos around
elliptical galaxies. We model radially extended stellar kinematical data for the E0 galaxy NGC 2434,
obtained by Carollo et al. This galaxy was chosen because it may be nearly round, in which case the
present spherical modeling is applicable. Models with constant mass-to-light ratio are clearly ruled
out, regardless of the orbital anisotropy. To study the amount of dark matter needed to match the
data, we considered a sequence of cosmologically motivated ‘star+halo’ potentials. These potentials
are based on the CDM simulations by Navarro et al., but also account for the accumulation of bary-
onic matter; they are specified by the stellar mass-to-light ratio ϒ�;B and the characteristic halo velocity,
V200. The star+halo models provide an excellent fit to the data, with ϒ�;B = 4:35� 0:35 (in B-band solar
units) and V200 = 450� 100 km/s. The best-fitting potential has a circular velocity Vc that is constant to
within � 10% between 0:2–3 effective radii and is very similar to the best-fitting logarithmic potential,
which has Vc = 300� 15 km s�1. In NGC 2434 roughly half of the mass within an effective radius is
dark. In comparison, our models without a dark halo estimate a mass-to-light ratio for the stellar pop-
ulation which is twice as large. If NGC 2434 is a significantly flattened system seen nearly face-on, it
would be considerably more difficult to limit the gravitational potential without further observational
constraints.

MAPPING how the ratio of luminous to dark matter in a galaxy changes as a function of
radius provides an important test for galaxy formation scenarios. Numerical simulations

of halo formation in a cosmological context have reached a level where they can predict the
radial profile of an isolated dark halo (Navarro et al. 1996, hereafter NFW; Cole & Lacey 1996).
This profile is altered by the presence of dissipative, baryonic matter, which collects at the center
and contracts the dark matter profile. This contraction may provide a natural explanation for the

13
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observed fact that the circular velocity is approximately constant with radius in spiral galaxies
(Blumenthal et al. 1986; NFW). Elliptical galaxies are more centrally concentrated than spiral
galaxies of the same mass, suggesting that they may have circular velocities that are higher in
the inner parts than in the outer parts.

Observational studies of the dark halos in spiral galaxies (e.g., van Albada et al. 1985) are
comparably straightforward. HI gas provides an excellent tracer to large radii. To interpret the
kinematics it is justifiable to assume a nearly co-planar distribution with nearly circular orbits,
upon which the gravitational potential can be constrained from the observables. By contrast,
the majority of elliptical galaxies do not have HI disks that are in equilibrium, and the transi-
tion from where the stellar mass dominates to where the dark halo dominates has remained
poorly constrained. This has been due to the difficulties in obtaining unambiguous results
from the stellar kinematics, as caused by two main problems. First, modeling the stellar dy-
namics for ellipticals is much more complex than for the cold disks of spirals (e.g., de Zeeuw
& Franx 1991; Bertin & Stiavelli 1993; de Zeeuw 1996). Not only is the deprojection of the
stellar surface brightness not unique, but also random motions dominate the kinematics, and
the stars can occupy a host of qualitatively different orbits in any given potential. Hence, the
dynamical modeling must solve for both the potential and the orbital distribution of the stars,
given the observed projected positions and velocities of stars. In practice, most existing studies
have not done this. Instead, the orbital structure has often been assumed a priori, by requiring
that the distribution function (hereafter, DF; i.e., the number of stars per unit volume of the
phase space of stellar positions and velocities) has a certain simple form. The second reason
for the poor understanding of the star–halo connection in ellipticals has been the fact that un-
til recently good stellar kinematic data were available only out to approximately one effective
radius Reff. This left more than half the stellar mass kinematically unconstrained. In addition,
the data were generally restricted to measurements of the two lowest order velocity moments,
i.e., the mean streaming velocity V and the line-of-sight velocity dispersion �. These quanti-
ties contain no or little independent information on the intrinsic velocity dispersion anisotropy
of the system (Binney & Mamon 1982), which provides the main indeterminacy in the mod-
eling. As a consequence, stellar dynamical indications for the presence of dark halos around
elliptical galaxies have remained ambiguous. There have been indications for dark halos in
studies that employed restricted classes of dynamical models (e.g., van der Marel 1991; Saglia
et al. 1992). However, the few models in the literature that had the full freedom of rearranging
orbits (e.g., Richstone & Tremaine 1984; Dejonghe 1989) have been able to fit the data for most
ellipticals without requiring any dark matter (Katz & Richstone 1985; Saglia et al. 1993; Bertin et
al. 1994). Discrete kinematical tracers in elliptical galaxies (i.e., planetary nebulae and globular
clusters) have the advantage that they can be observed to larger radii, but they have the disad-
vantage of small-number statistics. Dynamical modeling of their observed radial velocities is
beset by the same degeneracies that plague the interpretation of the integrated light measure-
ments. Not surprisingly, these studies have produced similarly ambiguous results (e.g., Cia-
rdullo, Jacoby & Dejonghe 1993; Tremblay, Merritt & Williams 1995). Yet, as summarized in
various reviews (e.g., Ashman 1992; de Zeeuw 1995; Saglia 1996), there is independent evi-
dence for extended dark matter from X-ray measurements of luminous galaxies (e.g., Forman,
Jones & Tucker 1985; Awaki et al. 1994), from HI kinematics (Franx et al. 1994), and from gravita-
tional lensing (e.g., Maoz & Rix 1993; Kochanek 1995). It is likely that this apparent discrepancy
is attributable to the shortcomings of the stellar dynamical tests, i.e., to the uncertainty about
the orbital distributions resulting from insufficiently constraining data.

There are several reasons for being optimistic that this situation can be improved and that
the luminous to dark matter distribution in elliptical galaxies can now be investigated in some
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detail through stellar dynamical studies. First, improved CCD technology (larger detector size,
higher QE, lower read-out noise and dark current), combined with improved strategies to en-
sure accurate sky subtraction and better stellar template matching, have made it possible to
obtain stellar kinematics to 2–4 Reff (Carollo et al. 1995, hereafter C95; Statler et al. 1996). With
data reaching out to these radii, kinematic constraints can be obtained over most of the stellar
body. Second, improved analysis techniques (e.g., Rix & White 1992; van der Marel & Franx
1993, hereafter vdMF; Kuijken & Merrifield 1993) make it possible now to extract the entire
line-of-sight velocity profile (VP) from the absorption-line spectra, rather than only its lowest
order moments V and �. The higher moments of the VP, which can now be measured, con-
tain essential information about the anisotropy of the velocity distribution (e.g., Dejonghe 1987;
Gerhard 1993; C95).

The main purpose of this paper is to describe the development and application of theoretical
tools that permit to model and fit VP shape data in a flexible and objective way. In its most gen-
eral form the modeling technique presented here can answer the question: given a variety of
gravitational potentials and given a set of observational constraints (photometry and kinemat-
ics, including VPs), what is the relative likelihood of the different potentials? For each potential
the orbital distribution is determined that best fits the data, and the likelihood follows from the
quality of the fit. Thus the method allows one to determine which are the best-fitting potentials,
and which potentials are excluded by the data.

Our technique is based on the numerical calculation of a representative library of orbits
in a chosen potential, and the subsequent determination of the non-negative superposition of
these orbits that best fits the data. This approach was pioneered by Schwarzschild (1979), who
required the orbit superposition to reproduce the galaxy density, and so built triaxial galaxy
models. Richstone (1980; 1984) built scale–free axisymmetric models with this technique. In
the past decade, the approach has been used to build a variety of spherical, axisymmetric and
triaxial galaxy models, which also include the observed radial velocities and/or velocity dis-
persions as constraints (e.g., Pfenniger 1984; Richstone & Tremaine 1984, 1985, 1988; Levison &
Richstone 1985; Zhao 1996).

We have built on this previous work by calculating and comparing an arbitrary number
of moments of the Gauss-Hermite series expansion of the VP, and by showing how they can be
used as linear constraints on the model. We also use the error on each observational constraint in
the superposition procedure to obtain an objective measure for the quality-of-fit, which allows
us to compare the relative likelihoods of different models. Only projected, observable quantities
are included in the fit. We include a proper seeing convolution of each orbit, so that the observa-
tional setup of the data (including aperture binning) can be accurately taken into account. The
addition of VP modeling not only allows us to interpret the VP shape data that is now becoming
available, but it also removes the need for additional simplifications and assumptions. We do
not have to assume that the true lowest order velocity moments of the models can be compared
without bias to the best Gaussian fits V and � obtained from the data. This was done in previous
implementations, and is also implicit in modeling based on the Jeans equations (e.g., Merritt &
Oh 1997). Avoiding this assumption removes the possibility of systematic errors (easily 10–20%;
vdMF) in the interpretation of V and �.

Our extension of Schwarzschild’ method is valid for any geometry. To illustrate and test
the new elements in the most straightforward way, we restrict ourselves here to the spherical
case, which simplifies the calculation of the stellar orbits. The treatment of the VP shapes and
of the orbital superposition is fully general. We test the method on analytic models, and then
apply it to the kinematic measurements for the E0 galaxy NGC 2434 obtained by C95; prelim-
inary results from this analysis are published in Rix (1996a,b). The extension of our scheme to
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axisymmetric systems is described in Cretton et al. (1999, chapter 3 of this thesis) and applied in
van der Marel et al. (1997, 1998, chapter 4 of this thesis).

The paper is organized as follows. In Section 2.1 we describe the modeling procedure. In
Section 2.2 we test the method on isotropic Hernquist models, and in Section 2.3 we use it
to study the presence and properties of a dark halo around the E0 galaxy NGC 2434. In the
analysis we use a family of cosmologically motivated galaxy potentials that is discussed in
Appendix 2.B. We summarize our results in Section 2.4.

2.1 Modeling technique

Our extension of Schwarzschild’s method tests in three steps whether a given potential is com-
patible with all observational data:

1. A representative library of orbits is calculated in the chosen potential.

2. Each orbit is projected onto the space of observables.

3. The combination of orbits with non-negative occupation numbers is found that best ma-
tches the data, taking into account the observational errors.

For computational convenience, we here carry out steps 1 and 2 for spherical geometry. Our
description of step 3 is fully general. Other techniques to constrain the potentials of spherical
stellar systems through modeling of observed VP shapes are available (e.g., Dejonghe & Merritt
1992; Merritt 1993a; Merritt & Saha 1993), but these do require the availability of analytic inte-
grals of motion. Our approach has the advantage that it can be generalized to more complicated
geometries in a straightforward manner.

2.1.1 Orbit Library

In a spherical gravitational potential Φ(r), all orbits are planar rosettes, characterized by four
isolating integrals of motion: the energy E, and the three components of the angular momentum~L. For each energy, L= j~Lj lies in the interval [0; Lmax], where Lmax is the angular momentum for
the circular orbit at energy E. This circular orbit has a radius rc, given by the implicit equation

Φ(rc)+ 1
2 rc

�@Φ@r

�
r=rc

= E: (2.1)

To cover phase space, we choose a grid in the (E; L) plane (the Lindblad diagram) in the follow-
ing way. We specify a set of radii rc;i, i = 1; : : : ;NE, taken to be log rc;i = log rmin+pi� 1 log ∆.
This functional form proved useful because it covers a large logarithmic range for small radii,
while (for a suitable step ∆) still providing a grid at large radii that is comparable to the ob-
served resolution. In practice, the radial spacing of the sub-orbits we describe below is � 0:500
at the effective radius. Each radius rc;i defines an energy grid point Ei, with an associated Lmax;i.
For each of the NE grid points Ei, we choose NL angular momenta Li j � � jLmax;i, j = 1; : : : ;NL.
The numbers � j are distributed uniformly in the interval [�; 1� �], with � = 0:02. This choice of� excludes the exactly radial and circular orbits, which avoids numerical difficulties in the ra-
dial orbit calculation for singular potentials, and avoids the sharp edges in the projected density
and VP of a circular orbit. Typically we set NE � 50 and NL � 10. As we described below, each
orbit is in practice constructed by adding � 25 sub-orbits of slightly different (E; L), in order to
reduce discreteness effects.

The orbits in a spherical model need only be integrated in the radial dimension, which pro-
vides the instantaneous radius r and radial velocity vr (e.g., Binney & Tremaine 1987). The
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tangential velocity vt follows from vt = L=r. Each orbit is started at its apocenter, and is cal-
culated for an integral number of periods. For a spherical potential one half of a period is
in principle sufficient, but calculating a small number of complete periods (� 5) reduces dis-
creteness effects in the result, arising from the finite number of time-steps. We chose approx-
imately 300 time steps per radial period. During the integration the time steps were adjusted
to conserve energy equally well at each step. For every orbit the energy fractional conserva-
tion was at least 10�5 over the whole integration. The forces and the potential were obtained
through power-law interpolation from previously tabulated arrays; the values were tabulated
for 10�6Reff < r < 104Reff in logarithmic steps of 0.001. We checked that all errors from the force
interpolation were negligible.

Our orbit integrations are carried out with a simple predictor-corrector integrator, because
the orbits need not be computed with great accuracy. If, for example, the orbit were to drift
in energy by a small amount during the integration, the orbit would no longer represent a�-function in phase space, but a short line or small area in the (E; L) plane. But since the (pre-
sumably) continuous DF is represented by a finite number of discrete orbits (or ‘basis vectors’),
there is no reason to prefer true �-functions over ‘fuzzy’ ones. Also, physical meaning cannot
be attached to rapid fluctuations of the phase space density, given realistically available con-
straints. Indeed, we have found it advantageous to assemble each orbit (Ei; Li j) from a number
of ‘sub-orbits’, typically about 25, whose integrals of motion are drawn at random from a small
phase space cube (�E; �L) around (Ei; Li j) (see also Zhao 1996). This reduces sharp edges in the
projected density and VP (especially for nearly circular orbits). It also relieves memory require-
ments by reducing the number of orbits that must be stored.

Many models can be most fully described analytically if their DFs are isotropic. Hence,
such isotropic models are suitable benchmarks for testing, or merely debugging, numerical
techniques. It is not entirely trivial how to construct isotropic models with Schwarzschild’s
technique. One way to do this is to use smoother building blocks, f (E)–components, in addition
to the (E; L)–orbits. These components can be viewed as a weighted combination of orbits with
different L, but the same E. They can be constructed almost analytically for spherical potentials,
as described in Appendix 2.A.

2.1.2 Observables

Projected orbits

We adopt a Cartesian coordinate system (x; y; z), with the z-axis directed towards the observer.
The associated cylindrical and polar coordinate systems are denoted (R; z; �) and (r; �; �). This
makes R the projected radius in the (x; y) plane of the sky. The tangential velocity vt satisfies
v2

t = v2� + v2�. An angle � defines v� and v� in terms of vt, through v� = vt cos � and v� = vt sin �.

As an orbit is integrated, it is projected onto the space of the observables (x; y; vz). In the
following, we will refer to the line-of-sight velocity vz as v. To store the projected orbital prop-
erties we adopt a grid (i.e., a storage cube) in the (x; y; v)-space. The spatial grid spacing should
be matched to the resolution of the photometric or spectroscopic observations. The velocity
coordinate should cover in principle [�vescape; vescape]. We found in practice that 30-50 velocity
bins covering the range [�4�max; 4�max] is sufficient, where �max is the largest observed velocity
dispersion. For the specific case of NGC 2434 we have used a 100 spatial grid, extending to 8000,
and a velocity grid covering �1000 km/s, at 40 km/s sampling.

The orbit integration yields only the phase-space coordinates (r; vr; vt) at each time step.
However, for projection onto the space of the observables, all six phase-space coordinates are
required. These are obtained by drawing a random viewing angle and a random direction of
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FIGURE 2.1— Grey-scale representations of the occupation weights wk
xyv of four orbits, shown in the (R; v) plane of

projected radius vs. line-of-sight velocity. The orbits have the same energy E, but different angular momenta L=Lmax.
Each orbit is assembled from 25 sub-orbits, as described in Section 2.1.1. The axes are in units of the cell sizes,
described in Section 2.1.2. The orbits were calculated in a Hernquist potential at an energy for which rc(E) � Reff.
Note the changes in the ‘caustic’ structure from the nearly radial orbit in the top left panel to the nearly circular orbit
in the bottom right panel, reflecting the changes in peri- and apocenter distance.

the tangential velocity vector at each time step, i.e., we draw cos � 2 [�1; 1], � 2 [0; 2�] and� 2 [0; 2�] from uniform distributions. This yields the following observables at the given time
step:

x = r sin � cos�; y = r sin� sin�; v = vr cos �� vt cos � sin �: (2.2)

This procedure properly takes into account the fact that the storage cube should contain the
average contribution of all trajectories that correspond to the given (Ei; Li j) (i.e., it ensures that

the models have DFs that depend only on the modulus of ~L, and not on its direction). The
procedure may be repeated numerous times at each time step, to obtain several different (x; y; v)
for the same (r; vr; vt). This corresponds to viewing the model from all geometrically equivalent
angles at a fixed time, and creates a smoother projection.

We denote the different orbits in the library (each corresponding to a fixed combination
(Ei; Li j)) with the index k, with k = 1; : : : ;No. The total number of orbits No = NE � NL. The

occupation weight of orbit k on the storage cube cell centered on (x; y; v) is denoted as wk
xyv. At

the start of the integration of each orbit, the weights are set to zero. As the integration of the
trajectory proceeds, and projected coordinates are obtained as described above, a weight is
added to the cube cell that contains the projected coordinates. This weight is chosen equal to the
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average of the sizes of the previous and the next time-step in the integration. This assignment of
weights is effectively a Monte-Carlo integration of the orbit over the grid, because the chance of
dropping a weight in a grid cell is proportional to the time the orbit spends in it. Once the orbit
calculation (and projections) are finished, the occupation weights for each orbit are normalized
to unit mass,

∑
xyv

wk
xyv = 1; 8k: (2.3)

Sometimes projected quantities extend beyond the boundaries of the storage cube. In this case
no weights are added to the grid, but the time spent outside the cube is used in the normaliza-
tion.

Figure 2.1 illustrates the occupation weights for four orbits in a test model, all with the same
energy E but with different angular momenta L=Lmax. Because of the spherical symmetry of the
system, the weights can be conveniently displayed in the two-dimensional space of projected
radius R and line-of-sight velocity v1. The difference in the appearance between e.g., the radial
orbit at the top and the circular orbit at the bottom is evident in this space of observables.

PSF convolution

It is important for model predictions to incorporate the observational setup and to account for
the point-spread-function (PSF) of the data. The final model is a linear super-position of orbits
and the PSF convolution of an orbit is also a linear operation. Therefore, the two operations
commute and the PSF convolution can be carried out separately for each orbit. The PSF does
not correlate velocities2 and hence is carried out separately for each velocity slice of the storage
cube. Each velocity slice is an ‘iso-velocity’ image of the orbit on a Cartesian grid. Hence, the
PSF convolution is most efficiently carried out by a Fast Fourier Transform of these iso-velocity
images. As many orbits, e.g., the tightly bound ones, only occupy a small fraction of the spatial
grid, the size 2N of the FFT grid can be adjusted for each orbit and each slice, resulting in a
considerable speed-up. The storage-grid must extend a few PSF widths beyond the outermost
observational data points. This PSF convolution is most important for studying the dynamics
at small radii if steep kinematic gradients are present, e.g., in the application of our technique
to the search for massive nuclear black holes (e.g., van der Marel et al. 1997, 1998, Cretton et
al. 1999).

Calculating the velocity moments

After the k-th orbit has been calculated, projected onto the storage cube and convolved with
the PSF, we need to extract quantities for direct comparison with the observational constraints.
The data contain information on the projected properties of the galaxy at a select number of
constraint positions on the projected face of the galaxy. Photometry is generally available over
the whole face of the galaxy, extending to much larger radii than the kinematic measurements.
So in general, there are different constraint positions for the photometric and the kinematic data.
In addition, the constraint positions are often extended areas (e.g., the width of a spectroscopic
slit multiplied by the number of pixels along the slit that were averaged to obtain spectra of
sufficient S/N). Clearly, the storage cube must be chosen sufficiently big to cover all constraint

1The use of a three-dimensional (x; y; v) storage cube in our technique is motivated by the fact that realistic obser-
vational setups generally do not have circular symmetry on the sky. It also makes the generalization to axisymmetric
systems simple. In axisymmetric or triaxial potentials the orbit integration proceeds differently, but after projection,
the fitting of the observational constraints through orbit superposition is identical.

2The finite spectrograph resolution, i.e., the PSF in the velocity direction, is being accounted for by the kinematic
data analysis technique (e.g., Rix & White 1992; vdMF).
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FIGURE 2.2— Fits to pseudo-data (small dots with error bars) drawn from a spherical, isotropic, non-rotating
Hernquist model with ϒtrue? = 1. In each column we show (from top to bottom) surface brightness � (in magnitude
units), velocity dispersion � (arbitrary units) and the VP shape coefficient h4, all as a function of radius. The solid
lines in each panel (in some cases coinciding with the sequence of dots), show the model prediction when only �(R)
and �(R), but not h4(R) were fitted. The bottom panel in each column shows the orbital weights of the best fit model
in the Lindblad diagram. The area of each dot is proportional to the logarithm of the orbital weight. The axes of the
Lindblad diagram are not the conventional (E; L), but rather rc(E)=Reff on the abscissa and L=Lmax(E) on the ordinate.
For the model in the center column the orbits were calculated in the potential with the correct value of ϒ?. The panels
on the left and right show the model predictions if ϒ? is assumed to be 0:5 and 2, respectively.

areas. The constraint positions are labeled by l, with l= 1; : : : ;Nc. We denote by fxy;l the fraction
of the area of the storage cube cell centered on the grid point (x; y), that is contained within the
constraint area l.

Let Mk
l be the fraction of the total mass on orbit k that contributes to constraint area l. This
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mass fraction is obtained by summing over the (PSF convolved) storage cube for the given orbit:

Mk
l = ∑

xyv

fxy;l wk
xyv: (2.4)

A dynamical model is determined by its orbital weights 
k, which measure the fraction of the
total mass of the system that resides on each orbit k (see Appendix 2.A.1 for details). The total
mass fraction Ml of the model that contributes to constraint area l is obtained as a sum over all
orbits:

Ml =∑
k


k Mk
l : (2.5)

To obtain the observed mass fractions Mobs
l at the constraint positions l from the observed sur-

face brightnesses �obs
l , we assume that the stellar population has the same mass-to-light ratio

everywhere in the galaxy3. One then has

Mobs
l = �obs

l Al=Ltot; (2.6)

where Al is the area of constraint position l, and Ltot is the total observed luminosity. Fitting the
predicted mass fractions Ml to the observed mass fractions Mobs

l is then a linear superposition
problem for the 
k.

For our technique to work, we must also ensure that the contributions of individual orbits to
all kinematic constraints add up linearly. As we show below, this can be achieved in a straight-
forward manner if we choose the Gauss-Hermite coefficients hm (m = 1; : : : ; M) to describe the
shape of the VP (vdMF; Gerhard 1993). The normalized VP contributed by orbit k to constraint
position l is

VPk
l;v = 1

Mk
l
∑
xy

fxy;l wk
xyv: (2.7)

The total normalized VP at constraint position l is obtained as a sum over all orbits:

VPl;v = 1

Ml
∑
k


k Mk
l VPk

l;v: (2.8)

This ‘histogram’, with the velocity v in the subscript on the left-hand-side as the independent
variable, is a discrete representation of the underlying continuous profile VPl(v). The Gauss-
Hermite moment hm;l of order m at constraint position l is defined as an integral over VPl(v):

hm;l = 2
p� Z 1�1 VPl(v) �(wl) Hm(wl) dv: (2.9)

The function � is a Gaussian weighting function:�(wl) � 1p
2� exp

��1

2
w2

l

�: (2.10)

The quantity wl is defined as wl � (v� Vl)=�l , where the velocity Vl and dispersion �l are (for
the moment) free parameters. The Hm(wl) are Hermite polynomials (see, e.g., Appendix A of
vdMF). One may similarly define the Gauss-Hermite moment hk

m;l of orbit k and order m for

3An independently known radial gradient in the stellar mass-to-light ratio, e.g., from a population analysis, can
be included by scaling the ‘photometric constraints’ at the beginning of the analysis.
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constraint position l, as an integral over VPk
l (v) (of which VPk

l;v is the discrete representation).
When the free parameters Vl and �l are chosen to be the same for each orbit k, it follows that

Ml hm;l =∑
k


k Mk
l hk

m;l: (2.11)

Thus, fitting the observed Gauss-Hermite moments hobs
m;l through the combination Mobs

l hobs
m;l is

also a linear superposition problem for the 
k.

In practice we choose Vl and �l equal to the parameters of the best-fitting Gaussian to the ob-
served VP at constraint position l (these are the observationally determined quantities). This im-
plies hobs

1;l = hobs
2;l = 0 for the first- and second-order observed Gauss-Hermite moments (vdMF).

By requiring the predicted moments h1;l and h2;l to reproduce this, the model VP automatically
has the correct mean velocity and velocity dispersion (as determined through a Gaussian fit).
Hence, these latter quantities need not be fitted separately. In this procedure we do require
knowledge of the errors ∆hobs

1;l and ∆hobs
2;l that correspond to the observationally quoted errors

∆V in Vl and ∆� in �l. These can be obtained from the general relations for Gauss-Hermite
expansions (vdMF),

∆h1 =�1

2

p
2 ∆V=�; ∆h2 =�1

2

p
2 ∆�=�; (2.12)

which are valid to first order in the (small) quantities (∆V=�), (∆�=�) and h3, h4, : : :.
The zeroth-order moment h0 defined by equation (2.9) measures the normalization of the

best-fitting Gaussian to the normalized VP. This quantity is not included in the fit, because
it is observationally inaccessible: it is directly proportional to the unknown difference in line
strength between the galaxy spectrum and the template spectrum used to analyze it. In prac-
tice one uses the assumption h0 = 1 to estimate the line strength from the observations. The
observational estimates for the higher-order Gauss-Hermite moments are also influenced by
uncertainties in the line strength, but only to second order. These uncertainties can be safely
ignored in all cases of practical interest.

Our scheme uses the Gauss-Hermite moments hm, which are defined as integrals over the
VPs. These integrals are well-defined for arbitrary functions, even highly non-Gaussian ones.
Our scheme therefore assumes neither that the individual orbital VPs are well described by
the lowest order terms of a Gauss-Hermite series (which is not generally the case), nor that the
observed VPs are well described by the lowest order terms of such a series (which is generally
the case). The Gauss-Hermite moments can be viewed as the projections of the VP’s onto the
set of Gauss-Hermite functions. In this picture, our scheme finds a solution where the weighted
sum of projections for the orbital VPs equals the projection of the observed VP within the error.
It does not enter anywhere in the scheme that these projections, or moments, have to be small
compared to unity for the higher order terms.

2.1.3 Comparison with the observational constraints

Once the properties of all orbits are calculated for all constraint positions, we need to find the
non-negative superposition of orbital weights 
k that best matches the observational constraints
within the error bars. When the observational errors are normally distributed, the quality of the
fit to the data is determined by the �2 statistic:�2 � Np
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FIGURE 2.3— As Figure 2.2, but now all observational constraints, �(R), �(R) and h4(R) were fitted. We also show
the radial variations of the intrinsic velocity dispersions, �r and �� = ��, in units of the total dispersion (�2

r + �2� +�2�)�1=2. While the model with the correct ϒ? is very close to isotropic, the other two show anisotropies that vary
strongly with radius.

where we assume that there are Np photometric and Nk = Nc � Np kinematic constraint po-
sitions. For a good model fit to actual data we should expect that the contribution to �2 from
the photometry and kinematics is � Np and Nk; in our application to NGC 2434, we find that
the contributions to the total �2 from the photometry and the kinematics are comparable. Cur-
rently, the number M of Gauss-Hermite moments that can be extracted from spectroscopic ob-
servations is typically 4. Once even higher order moments can be measured over a wide range
of radii, they should be included in the fit. Note that we have chosen to include the photomet-
ric errors explicitly, in contrast to other implementations (e.g., Richstone and Tremaine, 1988;
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van der Marel et al. 1998; Cretton et al. 1999). This procedure bypasses any arbitrary relative
weighting of the photometry vs. the kinematics. A consequence of this approach is that even
models without dark matter components will not be exactly self-consistent for a truly constant
mass-to-light ratio. This is not a drawback, as they do represent a self-consistent solution for
a model where the mass-to-light varies at the few percent level. Given our scarce knowledge
of the stellar mass-to-light ratio variations in ellipticals, such models are no less consistent with
the observations.

When all quantities are divided by their observational uncertainties, e.g., Mobs
1 ! Mobs

1 =
∆Mobs

1 , M1
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1h1
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which must be solved for the occupation vector (
1; : : : ; 
No
), with the constraints 
k � 0, for

k = 1; : : : ;No. There are standard algorithms for solving this problem and we use the Non-
Negative Least Squares (NNLS) algorithm by Lawson & Hanson (1974; see also Pfenniger 1984;
Zhao 1996).

The NNLS fit returns the orbital weights 
k and the model predictions for all the observed
quantities on the right-hand-side of equation (2.14). Among these are the predicted h1 and
h2, but not the predicted V and �. In practice it is often useful to know the latter, for visual
comparison to the data. The predicted V and � can be calculated to first order accuracy from the
predicted h1 and h2 using the relations (2.12). For higher accuracy one may fit a Gaussian to the
actual VPs predicted by the model, which are obtained by substituting the 
k into equation (2.8).

In practice one considers potentials that depend on a number of parameters. After the (set
of) best-fitting parameter combination(s) has been determined, the confidence regions on the
model parameters can be estimated from the relative likelihood statistic ∆�2 � �2� �2

min. If the
observational errors are normally distributed, then ∆�2 follows a �2 probability distribution,
with the number of degrees of freedom equal to the number of parameters in the potential
(Press et al. 1992). Errors on parameter values quoted in the modeling below correspond to the
68% confidence level, unless mentioned otherwise.

2.1.4 Regularization

If one uses fewer orbits than constraints, the NNLS fit will always have a formally unique
solution, even when the underlying physical problem allows a wide range of solutions. An
example is the case in which the observations constrain only the projected mass distribution



2.1 Modeling technique 25

FIGURE 2.4— Illustration of the additional constraints on the gravitational potential provided by VP shape infor-
mation. The dashed line shows �2 for the fit to the Hernquist test model with ϒtrue? = 1, when only �(R) and �(R)
are fitted. A range of potentials, 0:8 < ϒ? < 1:2, provides a perfect fit to the pseudo-data (�2 � 0, because no noise
was added). The assumption of an incorrect mass-to-light ratio can be fully compensated by a change in the orbital
distribution. This is no longer true if the model must also fit h4(R) (solid curve). In this case the range of potentials
that provides a perfect fit is much more narrowly centered on the true mass-to-light ratio.

and velocity dispersion profile (cf. Binney & Mamon 1982). To produce meaningful results
with this method, in practice one must therefore use more orbits, or basis vectors of the phase
space, than constraints. In this case, the best solution (which need not be an exact solution,
i.e., �2 = 0) need not be unique. The NNLS fit will select one of the possible solutions. The
adopted solution will generally be very irregular in phase-space (trying to accommodate all
the noise in the data or the orbit library), which is physically implausible. Non-negativity is
the only clear-cut physical constraint on the distribution function. The ‘smoothness’ of the DF
in a collisionless system ultimately depends on the efficiency of the violent relaxation during
the formation of the galaxy, which is difficult to quantify. Here, we are mostly interested in
constraints on the gravitational potential, independent of the detailed properties of the DF, as
long as it is non negative. Therefore, we employ only a very simple smoothing procedure,
which does not significantly impact the model fit to the data.

Smoothing of the DF can be achieved through regularization (Press et al. 1992), but there is
no unique approach (e.g., Merritt 1993b). Previous authors have either maximized the entropy
of phase space (Richstone & Tremaine 1988), or have enforced local smoothness of the distribu-
tion function (Merritt 1993a; Zhao 1996). Here we use a regularization scheme similar to that of
Zhao. It minimizes the local curvature of the mass distribution in phase space by including an
additional term to the �2-function defined in equation (2.13):� No

∑
k=1

�
̂k � 1

P

P

∑
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̂kp

�: (2.15)
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The P orbits k1; : : : ; kP are the ‘immediate neighbors’ of orbit k in phase space. For our simple
(Ei; Li j) grid there are four neighbors to each point that is not on the edge of the grid. The

quantities 
̂k are defined as 
̂k � 
k=
ref
k , where the 
ref

k are a set of reference weights. These
could be chosen to reflect any prior knowledge or prejudice about the DF. For example, they
may be set to the orbital weights that can be calculated semi-analytically (Appendix 2.A.1) for
an isotropic DF, forcing the model to tend to the isotropic DF in the limit of infinite smoothing.

Here we have employed the simplest regularization by setting all the 
ref
k equal to unity. The

parameter � in equation (2.15) governs the degree of regularization. Although this parameter is
in principle freely adjustable, it can be chosen in a reasonably objective way, by letting the data
determine the degree of permissible DF smoothing. Let �2

0 be the minimum chi-squared for the
case without regularization (�= 0). Any solution that matches the data with ∆�2 = �2��2

0 �< 1
is statistically equally acceptable. We can therefore increase � until ∆�2 = 1, which yields a
smoother DF that provides an equally good fit to the data. This regularization procedure is
followed in all the subsequent applications in this paper. As Figure 2.5 shows, this minimal
regularization often leads to drastically smoother DFs with indistinguishable fits to the data.

Given the simple nature of the regularization employed here, it is important to reiterate
that there is a large class of problems for which regularization is not essential. For example,
this is the case when the main goal is to rule out certain potentials, e.g., those without a dark
halo or without a black hole. If no good fit can be found without regularization, i.e., allowing
arbitrarily un-smooth DFs, then there will certainly not exist a smooth DF that fits the data.
Thus, by omitting regularization at all, one will always obtain conservative estimates of the
range of potentials that are ruled out.

2.2 An illustration of the method

As an illustration and a test, we create pseudo-data drawn from the analytically known prop-
erties of an isotropic ( f (E)) non-rotating Hernquist (1990) model. We assume a mass to light
ratio ϒtrue? = 1 for the stellar population (in arbitrary units), and assume that no dark material
is present. We match these pseudo-data with our technique, under the assumption of a mass-
to-light ratio ϒ?. As constraints we use the surface brightness over the radial range 0:05 Reff to
2 Reff, with an uncertainty of 5%, the line-of-sight velocity dispersion with an error of 5%, and
the (non-zero) values of h4 with an error of�0:05 (based on the observational characteristics of,
e.g., C95).

We calculated a library of 420 orbits (NE = 60 and NL = 7), with the energy grid ranging
from rc;1 = 0:01Reff to rc;NE

= 6Reff. Each orbit was built up from 25 sub-orbits (see Section 2.1.1).
Only one orbit library was calculated, for ϒ? = 1. The orbit library for any other ϒ? is obtained
trivially by rescaling the model velocity by a factor

p
ϒ?. However, the orbit contributions hk

m;l
to the Gauss-Hermite moments at each constraint position must be calculated separately for
each assumed ϒ?, because they involve the observed velocities Vl and dispersions �l in a non-
linear way. Similarly, the NNLS fit for the orbital weights 
k must also be done separately for
each ϒ?.

We constructed models with ϒ? = 0:5, 1 and 2. This mimics the realistic situation in which
the true mass-to-light ratio of a galaxy is unknown, and has to be inferred from models with
different ϒ?. Figure 2.2 shows the match to the pseudo-data if only the surface brightness and
the velocity dispersion profiles are fitted. For the correct mass-to-light ratio (middle panels),
the fit is perfect and the difference between input and output h4 is negligible, even though h4

was not fitted. Note that ∆�2 = 1 regularization has been applied to all models. The bottom
panel shows the orbital (mass) weights in a modified Lindblad diagram, where E and L are
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FIGURE 2.5— The effect of regularization on the modeling. All models in this figure have the correct mass-to-
light ratio. The left panels show the best fit without any regularization. The phase space distribution is jagged in
response to the numerical noise in the projected orbit properties. However, all models that produce a �2 that does
not differ by more than ∆�2 = 1 are statistically equally acceptable. Hence, we are at liberty to select the smoothest of
these models (center column; same as the center-column of Figure 2.3). The right column shows that with excessive
regularization the DF is very smooth, but at the expense of a worse fit to the data.

replaced by rc(E)=Reff and L=Lmax(E), respectively. The area of the dots is proportional to the
logarithm of the orbital weight and the vertical dashed lines show the radial range in which
observational constraints exist. For ϒ? = ϒtrue? all the mass is attributed to orbits with rc within
the observed range (although of course for very radial orbits, e.g., L=Lmax = 0:05, the apocenter
lies well beyond rc). The model assigns comparable mass to orbits with the same energy but dif-
ferent eccentricities. This is reassuring, because the pseudo-data were drawn from an isotropic
Hernquist model. Note that we have no reason to expect that our best fitting model is precisely
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isotropic, because we are constraining a function of two variables, f (E; L), by two functions of
one variable, the surface brightness and the velocity dispersion profile. This is insufficient to fix
f (E; L) uniquely, but the computations show that the remaining freedom in the DF is not large
(see also Dejonghe 1987). We verified that our method does reproduce the isotropic Hernquist
model exactly (to within the small discretization errors) when only the f (E)–components are
used (see Section 2.1.1 and Appendix 2.A).

The panels on either side show the fit for potentials with assumed mass-to-light ratios of
ϒ? = 0:5 (left) and ϒ? = 2 (right). For ϒ? = 0:5, the resulting distribution function consists of
two disjoint pieces: a tangentially biased part at rc �< Reff and a very radially biased part at
rc �> Reff. These parts conspire to increase the velocity dispersion in the observed range above
the isotropic value. The circular orbits have their highest projected velocity dispersion at R� rc

and the radial orbits have their highest projected dispersion at radii R� rc. The opposite effect
is observed when ϒ? = 2: the orbit weights now are given to radially biased orbits at small radii
and nearly circular orbits at very large radii. This combination leads to a projected dispersion
smaller than the isotropic value. Despite these discrepancies, it is remarkable that over much of
the radial range the velocity dispersion can be fit to much better than the factor of

p
2 expected

from simple scaling, owing to the freedom to select a special distribution of orbits. However,
the predicted h4 profiles for both ϒ? = 0:5 and ϒ? = 2 are significantly non-Gaussian, due to the
awkward phase-space structure; they differ substantially from the input profile.

Figure 2.3 shows the same orbit library, but forced to fit to surface brightness, the velocity
dispersion and the h4 profile. Not surprisingly, the model with ϒ? = 1 remains virtually un-
changed. For the other two models the match to h4(R) is improved, at the slight expense of
the �(R) fit. In this figure we also show the intrinsic velocity dispersions, �r and �� = ��. The
model with the correct ϒ? is close to isotropic, as expected from the input pseudo-data (perfect
isotropy cannot be expected as the constraints do not determine the DF uniquely). The other
models have anisotropies that vary strongly with radius, trying to match the data. Note that
this type of modeling does permit for a wide range of anisotropies if this is required to fit the
data. Figure 2.4 shows the �2 of the model fit as a function of ϒ?. The dashed line shows the
fit if only the surface brightness and velocity dispersion profiles are used as constraints (as in
Figure 2.2). A range of potentials, those with 0:8�< ϒ? �< 1:2, all match the data perfectly (�2 � 0,
because no noise was added to the pseudo-data). This is consistent with the results of Binney &
Mamon (1982); in each potential the model uses a different orbital structure to fit the data. The
solid line shows the �2 when the h4 profile is included in the fit (as in Figure 2.3). The range of
ϒ? that produces �2 � 0 is now much more narrowly centered on the true value, ϒtrue? = 1. Many
of the potentials that could fit the surface brightness and velocity dispersion profiles cannot si-
multaneously fit the h4 profile. The VP shape information constrains the velocity anisotropy,
and therefore helps in limiting the set of allowed potentials.

Figure 2.5 shows the effect of regularizing the orbital weight distribution, for the case in
which the mass-to-light ratio is correctly assumed to be ϒ? = 1. The left panel shows the fit
without any regularization: the resulting phase-space distribution is very jagged, and in fact
very different from the isotropic model that was used to generate the pseudo-data. However,
since all orbital weight distributions that yield fits within ∆�2 � 1 are a statistically equally good
match to the data, we are at liberty to select the smoothest distribution function amongst those
(middle panel). This model is indeed very close to the isotropic model. The right panel shows
excessive regularization, resulting in ∆�2 = 10. In the latter case one sees that the fit to the data
deteriorates if too smooth an orbital weight distribution is enforced.
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2.3 Improved mass modeling for elliptical galaxies

2.3.1 Choice of potentials

The modeling technique yields the relative likelihood of different gravitational potentials, given
the observational constraints. However, even for the simplest, spherical case, there is an infinity
of trial potentials, Φ(r). Much of the previous modeling in the literature has focused on testing
the constant mass-to-light ratio hypothesis, for which the sequence of trial potentials is one-
dimensional, and can be labeled by ϒ?. However, there are two cases of principal interest in
which the total mass density is not proportional to the luminous stellar density, namely if (a)
there is a massive black hole at the center of a galaxy, or (b) the luminous galaxy is embedded
in a dark halo. While in case (a) the set of trial potentials is characterized by two parameters,
ϒ? and the black hole mass MBH, case (b) requires a more complex treatment. In the application
of our technique below, to study the presence and properties of a dark halo in NGC 2434, we
consider three classes of potentials. In each case the goal is to determine whether the given class
of potentials is consistent with the data, and for what values of the parameters.

1. Constant mass-to-light ratio models, representing the case without a dark halo (or the
case in which the dark and luminous matter have the same spatial distribution). The
gravitational potential is derived directly from the deprojected stellar luminosity (and
thus mass) distribution, with the mass-to-light ratio ϒ? as the only free parameter.

2. Logarithmic potentials, as a popular case of an ad hoc functional form for the gravitational
potential of a galaxy with a dark halo, with the (constant) circular velocity Vc as the only
free parameter.

3. Cosmologically motivated ‘star+halo’ models, based on the recent work by NFW. These
models use dark matter mass profiles predicted from collisionless cosmological simula-
tions, which are modified by the baryonic/stellar mass accumulating at their center under
the assumption of adiabatic invariance. The motivation and construction of these poten-
tials is described in detail in Appendix 2.B. The resulting potentials are characterized by
two parameters: the stellar mass-to-light ratio ϒ? and a characteristic scale velocity V200

of the dark halo.

2.3.2 An application: The dark matter halo around NGC 2434

We combine the technique discussed in Section 2.1 with the sequence of trial potentials de-
scribed in Section 2.3.1, to ask what range of gravitational potentials are compatible with the ob-
served photometry and kinematics of NGC 2434. This is a nearly round (E0) elliptical galaxy at
an adopted 27 Mpc, with absolute luminosity MB=�19:9. Rotation is unimportant (Erot=Ekin �
0:01). The kinematic data (� and h4) are from C95, and extend to 6000; the photometry is from
Carollo & Danziger (1994), and extends to 10500. NGC 2434 is one of the few early-type galaxies
where the stellar kinematics, including the shape of the VP, have been measured to � 2:5Reff

(Reff � 2400).
C95 showed that the kinematics of NGC 2434 could not be fit with axisymmetric constant

mass-to-light ratio models with a DF of the form f = f (E; Lz) (if NGC 2434 is seen edge-on and is
intrinsically as round as it appears on the sky, these reduce essentially to spherical isotropic f (E)
models). From the sign of the discrepancy between their simple models and the data, they also
inferred that no other model without dark matter would fit the observational constraints. Here
we take the analysis two steps further: (i) we demonstrate that NGC 2434’s kinematics cannot be
fit by any constant mass-to-light ratio model, regardless of the radial anisotropy of the orbital
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FIGURE 2.6— Predictions of constant mass-to-light ratio models compared to the data for NGC 2434. The top
panels show ∆(�� �1=4) the difference between the surface brightness (in magnitudes) and the surface brightness
of the best fitting de Vaucouleurs model. All other quantities in the panels are as in Figure 2.2. Models are shown
for, from left to right, ϒ?;B = 6:5, 8:2 and 11:3. The middle column provides the best fit, but the observational data
cannot be well fit for any value of ϒ?;B . This implies that spherical models with constant mass-to-light ratio are ruled
out, independent of the orbital anisotropy of the system.

distribution; and (ii) we explore the issue of how much dark matter is required to match the data.
It is important to keep in mind for the following analysis, that we restrict ourselves to spherical
modeling, and that axisymmetric face-on models have even more freedom to select different
orbits.
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FIGURE 2.7— Predictions of a model with a logarithmic potential with Vc = 300 km s�1 , compared to the data for
NGC 2434. The model provides an excellent fit, by contrast to the constant mass-to-light ratio models in Figure 2.6.
All observational constraints are matched within the error-bars with a fairly smooth and contiguous distribution of
orbital weights. The value of �2 = 25 is considerably lower than expected for the fit to 98 data points. It is apparent
from the Figure that this is not because the model “fits every noise spike”, but because a portion of the errors in the
photometry and kinematics is systematic; i.e. the scatter among neighboring data points is less than the size of their
error bars.

Constant mass-to-light ratio models

Following C95, the luminosity density of N2434 can be parameterized as�? / (r=b)� �1+ (r=b)2
�� ; (2.16)

(with � = �1:9, � = �0:52 and b = 1300, see C95). This parametrized form approximates the
observed R-band surface brightness (Carollo and Danziger, 1994) to � 4% over the range of
interest. For convenience we calculated the luminous gravitational potential from it assuming a
constant mass-to-light ratio ϒ?. As a consequence, even the models without dark halos will not
have a perfectly constant mass-to-light ratio. However, the few percent differences are no less
consistent with the stellar population data than constant ϒ?(r).
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As in the test case of Section 2.2, an orbit library was calculated for only one value of ϒ?,
which was subsequently scaled to arbitrary values of ϒ?. We used a grid of 60� 7 orbits in E
and L=Lmax, with each orbit ‘built’ from 25 sub-orbits. The energy grid ranged from rc;1 = 0:100
to rc;NE

= 50000; the corresponding radial spacing is 1:500 (0:300 for the sub-orbits) at the scale
radius (b = 1300), and 500 (100) at the last spectroscopic data point. Our technique was used to fit
the data (with regularization as discussed in Section 2.1.4), for B-band mass-to-light ratios ϒ?;B
ranging from 5 to 13 (in solar units). The actual value of ϒ?;B was derived assuming a distance
of 27 Mpc and a B-R color of 1.7 (Poulain and Nieto, 1994).

Figure 2.6 shows the fits for various values of ϒ?;B. The best fit is found for ϒ?;B = 8:2� 0:4,
but the observational data cannot be well fit by these models for any value of ϒ?;B. For all val-
ues the algorithm invokes a highly anisotropic DF, in which the anisotropy is radically different
between the inner and outer parts of the galaxy. However, at large radii none of the models
can match a dispersion profile as flat as observed, while maintaining the observed nearly Gaus-
sian VPs. Compared to the best-fitting models presented in Section 2.3.2, the constant mass-to-
light ratio models can be ruled out at the > 99:9% confidence level, independent of the orbital
anisotropy of the system.

It is worth noting that this rejection of the constant mass-to-light ratio hypothesis requires
the observed constraints on the VP, i.e., the knowledge that the VP is approximately Gaussian
h4 � 1. If only the surface brightness and the velocity dispersion are used as constraints, an
(almost) acceptable model can be found with constant mass-to-light ratio.

Logarithmic potentials

Scale-free logarithmic potentials have Φ(r) � V2
c log r. Such potentials have a constant circular

velocity Vc, and have therefore been popular as approximations to the potentials of galaxies
with dark halos. Although the stellar kinematics of elliptical galaxies at R �< Reff can be well
fit by models with logarithmic potentials (Kochanek 1994), constant mass-to-light ratio models
generally provide equally good fits (van der Marel 1991). However, studies of gravitational
lensing statistics (Maoz & Rix 1993) and gravitational lensing observations for individual galax-
ies (e.g., Kochanek 1995) strongly rule out these constant mass-to-light ratio models, whereas
logarithmic potentials do provide good fits. Logarithmic potentials therefore provide the logical
next step in our modeling of NGC 2434.

We calculated orbit libraries for logarithmic potentials with Vc ranging from 250 to 370 km s�1,
in similar fashion as in Section 2.3.2. A model with Vc = 300� 15 km s�1 was found to provide
an excellent fit to the data, as shown in Figure 2.7. The distribution function is smooth and con-
tiguous, and close to isotropic. The small error bar on Vc illustrates that the addition of VP shape
constraints allows the normalization of the potential to be accurately determined, provided that
its shape is assumed to be known a priori.

Cosmologically motivated star+halo potentials

So far, we have shown that constant mass-to-light ratio models fail, whereas a model with a
logarithmic potential succeeds in fitting the data for NGC 2434. The cosmologically motivated
star+halo potentials discussed in Appendix 2.B provide a continuous sequence that connect
these two cases. We computed a grid of these potentials, with ϒ?;B in the range 2–13 and
V200 in the range of 0–800 km s�1 (V200 = 0 km s�1 corresponds to the constant mass-to-light
ratio model). Circular velocity curves for some of the resulting potentials are shown in Fig-
ure 2.8. We calculated orbit libraries in these potentials, in similar fashion as in Section 2.3.2.
For each (ϒ?;B;V200) the orbital distribution was found that best reproduced the data, with the
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FIGURE 2.8— Rotation curves, vc = (R@Φ=@R)1=2, for four of the cosmologically motivated star+halo potentials
described in Appendix 2.B (solid curves). In all cases the stellar mass-to-light ratio ϒ?;B = 4:5, but the character-
istic halo velocity, V200, changes from 100 to 600 km s�1. The dashed and dash-dotted curves show the separate
contributions from the stars and the dark matter, respectively. The sequence presents a way of consistently and
continuously ‘bending up’ the outer part of the rotation curve. The mass distribution for V200 = 400 km s�1 leads to
an approximately flat rotation curve from 0:2 < r=Reff < 3 and is very similar to the best fitting logarithmic potential
(Figure 2.7).

corresponding �2. With these potentials an excellent fit can be obtained to the data. As an
example, Figure 2.9 shows a model with ϒ?;B = 4 and V200 = 400 km s�1. This model, and
the other models that fit the data well, have a radially anisotropic stellar velocity distribution
(�r=��=�� = 1:4 : 1 : 1). This is consistent with the results obtained from asymptotic models
by de Bruijne, van der Marel, and de Zeeuw (1996).

Figure 2.10 shows the grid of models that were calculated to explore the relative likelihood
of models in the (ϒ?;B;V200) plane. The area of each point corresponds to the logarithm of their
relative likelihood. There is a clear anti-correlation between ϒ?;B and the mass of the halo (pro-
portional to V2

200). This is because the most robustly constrained quantity is the mass inside a
characteristic radius (� Reff), which could be either stellar or dark. This anti-correlation is quan-
tified in Figure 2.11, which shows the 68% and 95% confidence regions for the joint distribution
of (ϒ?;B;V200). Figure 2.11 also shows that the best fitting parameters are ϒ?;B = 4:35 � 0:35
and V200 = 450 � 100 km s�1. Note that this model has a nearly constant circular velocity of� 310 km/s over the constrained radial range. The errors quoted refer to the 68% confidence
region of each parameter individually.

Interestingly, the stellar mass-to-light ratio ϒ?;B for the best fit models is only 50% of the
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FIGURE 2.9— Predictions of a model with a cosmologically motivated star+halo potential, compared to the data
for NGC 2434. The fit is excellent. The model has ϒ?;B = 4:5 and V200 = 400 km s�1, and was found to provide the
best fit among the parameter combinations studied, cf. Figure 2.10. The fit to the data and the orbital structure
of this model are very similar to those in Figure 2.7 for the logarithmic potential, as might be expected from the
similarity in the two potentials (cf. Figure 2.8). As in Figure 2.3, the fourth panel from the top shows the intrinsic
velocity dispersions in units of �tot = (�2

r +�2�+�2�)�1=2. The model is radially anisotropic to a nearly constant degree
throughout the fit range.

value for the best-fitting constant mass-to-light ratio model shown in Figure 2.6, which is, how-
ever, a poor fit. Even with a minimum halo of V200 = 250 km s�1, roughly the smallest value
allowed by the data, it is still only 62%. Thus constant mass-to-light ratio models tend to over-
estimate the true stellar mass-to-light ratio when a dark halo is present. The reason is that these
models attempt to reproduce roughly the correct mass within a characteristic radius (� Reff),
but have no other option than to ascribe this mass to the stars.

The best-fitting models (e.g., that in Figure 2.10) have circular velocity curves that are nearly
flat (see Figure 2.8). Their potential resembles that of the best-fitting logarithmic potential in
Figure 2.9. As a result, their orbital distribution is also very similar.
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FIGURE 2.10— Relative likelihood of all star+halo models that were calculated in the parameter space of ϒ?;B and
V200. For each model the superposition of orbits was determined that best fits the NGC 2434 data. The area of each
point is proportional to the logarithm of its relative likelihood, which is determined by ∆�2. Models with no dark
halo (V200 = 0) are ruled out. A wide range of potentials with a dark halo can fit the data. There is a strong anti-
correlation between ϒ?;B and V200 (see also Figure 2.11); the kinematics strongly constrain the mass within a given
radius, but this mass can either be attributed to the visible or the dark matter.

2.4 Conclusions

We have described an extension of Schwarzschild’s method that is capable of modeling the full
line-of-sight velocity distributions of galaxies. Similarly to what is done in the original scheme,
we build galaxy models by computing a representative library of orbits in a given potential,
and determine the non-negative superposition of these orbits that best fits an observed set of
photometric and kinematic constraints. We have extended the technique to predict the full VP
shapes for all models, and to include them in the fit to the data as a set of linear constraints.
This allows us to fully exploit the high quality kinematical and VP shape data that are now be-
coming available, and so to constrain the anisotropy of the velocity distribution. The latter has
been the main uncertainty in previous attempts to infer the gravitational potentials of elliptical
galaxies from observational data. Explicit modeling of VPs also removes systematic errors in
the comparison to the lowest-order velocity moments V and �.

We characterize the VPs through their Gauss-Hermite moments. Measurements of observed
VPs are now routinely specified by constraints on these moments. This is useful in practice, be-
cause data on observed VPs are often reported as constraints on the Gauss-Hermite moments. It
is also computationally convenient, because it reduces VP histograms with 30–50 bins to a small
number of parameters. However, our technique is not restricted to the use of Gauss-Hermite
moments. In principle one may fit individual velocity bins of observed VPs, if such data is
available (as it is, e.g., in the technique of Rix & White 1992). However, this does increase stor-
age and memory requirements, while also increasing the size, and therefore the computational
complexity, of the NNLS fit.

We also take into account the error on each observational constraint in finding the best
matching orbit superposition. Hence we obtain an objective measure for the quality-of-fit and
can determine the relative likelihoods of different models. Only projected, observable quan-
tities are included in the fit. We have also outlined how to include the PSF and the detailed
sampling of the data in the data–model comparison by convolving each orbit and sampling it
over the observational apertures. This procedure is especially important in the study of galactic
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nuclei. We enforce smoothness of the model DFs in phase space through a simple regularization
scheme.

The scheme presented in Section 2.1 is valid for any geometry. However, in this first paper,
we restricted ourselves to spherical systems which allows swift numerical calculation of the
orbit libraries. The orbit superposition scheme was presented in its general form. This allows
us to test new elements of our technique in the most straightforward way. We tested our method
by constructing models that reproduce pseudo-data drawn from an isotropic Hernquist model,
with and without inclusion of VP shape constraints in the fit. The results clearly demonstrate
the importance of these constraints in narrowing down the range of potentials that can fit a
given velocity dispersion profile when no assumptions are made about the form of the DF.

As an application we have considered the case of dark halos around elliptical galaxies. We
used our technique to interpret the stellar kinematical and VP shape data out to� 2:5Reff for the
E0 galaxy NGC 2434. Models were constructed with a constant mass-to-light ratio, with loga-
rithmic potentials, and with cosmologically motivated star+halo potentials. The latter are based
on the cosmological simulations by NFW, but are modified to incorporate the accumulation of
baryonic matter under the assumption of adiabatic invariance. Models without a dark halo are
ruled out. Both a logarithmic potential and a cosmologically motivated star+halo potential can
provide an excellent fit to the data. The dark halo of NGC 2434 is such that roughly half of the
mass within an effective radius is dark. Spherical models without a dark halo therefore tend
to overestimate the mass-to-light ratio of the stellar population by a factor of � 2. The best-
fitting star+halo potential has a circular velocity curve that is constant (‘flat’) to within � 10%
from 0:2Reff to 3Reff. This constant circular velocity is close to that of the best-fitting logarithmic
potential, which has Vc = 300� 15 km s�1.

The restriction to spherical models for NGC 2434 is an important limitation. It is possible
that NGC 2434 is a quite flattened system, seen nearly face-on. In this case, the DF has more
degrees of freedom, and the potential (and the amount of dark matter) is less constrained. This
issue, for NGC 2434 and other galaxies, will be fully explored with the axisymmetric extension
of this technique (Cretton et al. 1999, van der Marel et al. 1998) in forthcoming papers.

If NGC 2434 is intrinsically quite round, the results presented here provide a first test of the
conjecture that elliptical galaxies and spirals of the same stellar mass started out in similar dark
matter halos. Obviously, the two types of galaxies differ in the degree to which the baryons
were concentrated at their centers (with ellipticals being much denser). If the ‘baryon contrac-
tion’ led a flat rotation curve in spirals, it should have led to a centrally peaked (and hence
outward falling) rotation curve in ellipticals. The nearly constant circular velocity in NGC 2434
is, however, inconsistent with this idea.

The extension to axisymmetric systems is described in detail in a forthcoming paper (Cretton
et al. 1999). The application to the galaxy M32, to investigate the presence of a massive central
black hole, is discussed in van der Marel et al. (1997, 1998). A further extension to tumbling
triaxial systems is in progress. Another possible extension is to include radial variations in the
stellar population. This can be achieved by choosing a radially varying ϒ?, or by including
the color and line-strength gradients in the set of constraints, while allowing each orbit to be
occupied by stars with different physical properties.
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2.A The differential mass density

We describe here the connection between the orbital weights used in the Schwarzschild tech-
nique and the DF. Our treatment largely follows that of Vandervoort (1984).

2.A.1 Inferring the distribution function from the orbital weights

The general DF for a spherical system is f (E; L), where the binding energy E and angular mo-
mentum L per unit mass are

E = Ψ(r)� 1

2
v2

r � L2

2r2
; L = rvt; (2.17)

and the positive gravitational potential is Ψ � �Φ. A solution of the Schwarzschild technique
is not a direct approximation to f (E; L), but to the differential mass density in the Lindblad dia-
gram, 
(E; L) � dM = dE dL. This function is fully determined by the DF and the gravitational
potential.

The total mass of the system is the integral of the DF over phase-space

M = Z
d3r d3v f (E; L)= Z

4�r2 dr
Z

d� Z vt dvt

Z
dvr f (E; L); (2.18)

where the angle � is the direction of the tangential velocity vector, as defined in Section 2.1.2.
The integral over � is trivial (since neither E nor L depends on it), so M results from a three-
dimensional integral over the phase-space coordinates (r; vt; vr). One may change the order of
the integrations and change to the integration variables (r; L; E) to obtain

M = 8�2
Z Ψ(0)�1 dE

Z Lmax(E)

0
L f (E; L) Tr(E; L) dL: (2.19)

The radial period Tr(E; L) of the orbit with integrals (E; L) is defined as

Tr(E; L) � 2
Z rmax(E;L)

rmin(E;L)

dr

vr
= 2

Z rmax(E;L)

rmin(E;L)

dr

[2(Ψ(r)� E)� (L2=r2)]1=2
; (2.20)

and can be easily calculated numerically for any potential. Equation (2.19) shows that the dif-
ferential mass density is: 
(E; L)= 8�2 L f (E; L) Tr(E; L): (2.21)

The Schwarzschild technique characterizes a system by the orbital weights (mass fractions)
k for a discrete set of orbits. Each orbit k corresponds to a combination (Ei; Li j) of the integrals
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of motion. Let the corresponding grid cell in (E; L) space have an area Ai j. The orbital weights
k are then related to the DF according to
k � 8�2 Li j f (Ei; Li j) Tr(Ei; Li j) Ai j=M: (2.22)

This relation allows the DF to be estimated from a set of 
k inferred by the technique (or, it
allows the 
k to be predicted for a test model with a known DF).

2.A.2 Construction of f (E)-components

It proved useful for testing our technique to use building blocks that are more complex than
individual orbits. In particular, we constructed building blocks that correspond to a weighted
sum of orbits with the same energy. The orbital occupancies Wxyv of these components are
related to the orbital occupancies wxyv for the individual orbits, defined in Section 2.1.2, through:

Wi
xyv = NL

∑
j=1

� j w
i j
xyv (2.23)

(we denote here each orbit by the indices i and j of its position on the (E; L) grid, rather than
by its index k). The weights � j are such that each component corresponds to an isotropic DF,
restricted to one energy Ei. This requires that� j = Li j Tr(Ei; Li j) Ai j

� " NL

∑
j=1

Li j Tr(Ei; Li j) Ai j

# : (2.24)

This follows from equation (2.22) (which gives the relative masses contained on orbits with the
same energy but different angular momenta) and from the fact that the � j must add to unity

(so that the orbital occupancies Wi
xyv are normalized). We call the resulting building blocks

‘ f (E)-components’. Any combination of these components yields an isotropic DF.
One may alternatively derive the construction of the f (E)-components from an analysis

based on delta-function DFs. Let f �[E0] represent a delta-function in the energy, f �[E0](E)� A0 �(E�
E0), and let f �[E0;L0] represent a delta-function in both energy and angular momentum, f �[E0;L0](E; L)� B0 �(E� E0; L� L0). These DFs are normalized to unit mass if

A0 = "8�2
Z

L Tr(E0; L) dL

#�1; B0 = "8�2L0 Tr(E0; L0)

#�1; (2.25)

cf. equation (2.19). Therefore,

f �[E0](E) = Z
f �[E0;L0](E; L)

L0 Tr(E0; L0)R
L0 Tr(E0; L0) dL0 dL0; (2.26)

which shows how f �[E0] is build up as a weighted integral over the f �[E0;L0]. The weights provide
the continuous analog of equation (2.24). The projected properties for the delta-function DF
f �[E0;L0] can be traced in analytical fashion (see also Merritt 1993a). For example, the VP can be
evaluated through a 1D quadrature over the line of sight:

VP(x; y; v) = Z
f �[E0;L0](E; L) dvx dvy dz= Z
f �[E0;L0](E; L) J(E; L) dE dL dz = B0

Z
J(E0; L0) dz; (2.27)
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where J(E; L) is the Jacobian for the change of integration variables, from (vx; vy) to (E; L):

J = "2vyx(xvx+ zv)

#�1; (2.28)

with

vy =�q2(Ψ� E)� v2 � v2
x; vx =�1

x

h
zv�p2(Ψ� E)(z2+ x2)� L2

i: (2.29)

Finally isotropic building blocks f (Ei) can be constructed as a weighted sum of all the orbits
of the same energy Ei:

f (Ei) = Z
f (Ei; Li) � Tr(Ei; L) LR

Tr(Ei; L) L dL
dL: (2.30)

2.B Cosmologically motivated star+halo models

To model the dynamics of galaxies with dark matter halos one must choose a dark potential to
add to the luminous one. The traditional approach, used widely when fitting rotation curves of
spiral galaxies, has been to describe the dark matter as an isothermal sphere with asymptotic
circular velocity Vc and core radius rh (e.g., van Albada et al. 1985). The main drawback of this
approach is that it is without physical basis: it is implausible to expect a dark matter halo with
a constant density core after the baryonic mass has condensed and concentrated at its center. It
also has disadvantages from a practical point of view. The dark halo is described by two new
parameters, which add to the unknown mass-to-light ratio ϒ? of the stellar population. This
makes the sequence of potentials that must be compared to the data three-dimensional, which
makes a proper comparison to data for elliptical galaxies very time consuming. Apart from this,
Vc and rh are highly correlated and cannot even be determined independently from observed
rotation curves for most spiral galaxies.

Suggestive alternatives come from cosmological studies. NFW and Cole & Lacey (1996)
have found that in numerical simulations of many cosmogonies, including standard CDM, the
spherically averaged density profiles of the forming virialized halos can be described by a sim-
ple functional form over a wide range of radii:�(r) = �crit �c

(r=rs)
�
1+ (r=rs)

�2 ; (2.31)

where �crit = (3H2
0)=(8�G) is the critical density of the universe. The two scale parameters �c

and rs are defined in terms of a dimensionless concentration parameter c, through�c = 200

3
c3=hln (1+ c)� c=(1+ c)

i; rs = r200=c; (2.32)

where r200 is defined as the radius within which the mean halo density is 200�crit. Each halo may
also be described by a mass scale M200 � 200�crit(4�=3)r3

200 and a velocity V200 �pGM200=r200.
Mathematically, any two of these parameters are sufficient to describe the halo’s structure,
e.g., V200 and c. Remarkably, NFW found in addition that for a given cosmology, the two pa-
rameters are tightly correlated (e.g., with� 15% scatter in c at a given V200). For standard CDM
this relation can be described by

log10 c = 1:05 � 0:15
�
M200=(3� 1013 M�)

�: (2.33)
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Thus, these N-body simulations essentially suggest a cosmologically motivated, one-parameter
sequence of dark matter halo models.

The NFW simulations do not contain dissipative, baryonic matter. In reality, such matter
collects at the center of the potential well to form the visible part of the galaxy. Blumenthal et
al. (1986) suggested that adiabatic invariance can be exploited to estimate how the halo structure
is modified by the accumulation of luminous matter at the center. This was confirmed by N-
body simulations with a crude model for the infall of the dissipative matter. In general, adiabatic
invariance holds (approximately) for those orbits with periods smaller than the characteristic
time scale of the changes in the potential (Binney & Tremaine 1987). An elliptical galaxy has a
dynamical time of a few times 107 years at the effective radius, so adiabatic invariance may be
a good approximation if the baryonic infall occurs over a time scale exceeding 107�8 years.

If the radial mass profiles of baryons and dark matter were initially the same, then adiabatic
invariance in the simplest approximation (Blumenthal et al. 1986) relates the initial and final
radii of the mass shells ri and rf, respectively, by

rf

h
M?(rf)+MDM(rf)

i = riMi(ri): (2.34)

Here Mi(ri) is the initial total mass within radius ri, M?(rf) is the final stellar mass within radius
rf, and MDM(rf) is the final dark mass with radius rf. We assume the initial profile Mi(ri) to be as
given by NFW for the case of standard CDM (Ω= 1), with the characteristic velocity V200 as free
parameter. We then employ adiabatic contraction to obtain the final dark matter profile MDM(rf)
from the observed stellar mass profile M?(rf), assuming a stellar mass-to-light ratio ϒ?. This
yields a sequence of star+halo models that are characterized by the parameters ϒ? and V200. This
procedure does not account for mergers, which will decrease the coarse-grained phase-space
density and the physical density of both the luminous and dark matter; how merging would
change the ratio of luminous to dark matter is not clear. In this sense the present procedure,
assuming Ω= 1 and neglecting late mergers, leads to the densest possible halo model potentials,
at a given V200. Viewed differently, other scenarios will require halos of higher V200 to have the
same amount of mass within a given radius that is accesible to observations (say, 2 Reff).

Circular velocity curves for some of the resulting potentials are shown in Figure 2.8. Several
features are noteworthy: (i) the transition from the luminous to the dark matter dominated
regime is always smooth, and is not marked by a feature in the circular velocity curve; (ii)
because the condensing baryons drag some of the dark matter with them to the center, the dark
matter fraction decreases slower towards small radii than it does for constant density core halos;
and (iii) compact halos are required in order to produce an ‘effectively flat’ circular velocity
curve.



Chapter 3

Axisymmetric Three-Integral Models for Galaxies

Cretton, N., de Zeeuw, P. T., van der Marel R. P., Rix, H.–W.
1999, ApJ Supplement Series, in press

We describe an improved, practical method for constructing galaxy models that match an arbitrary set
of observational constraints, without prior assumptions about the phase-space distribution function
(DF). Our method is an extension of Schwarzschild’s orbit superposition technique. As in Schwarz-
schild’s original implementation, we compute a representative library of orbits in a given potential.
We then project each orbit onto the space of observables, consisting of position on the sky and line-
of-sight velocity, while properly taking into account seeing convolution and pixel binning. We find
the combination of orbits that produces a dynamical model that best fits the observed photometry and
kinematics of the galaxy. A new element of this work is the ability to predict and match to the data the
full line-of-sight velocity profile shapes. A dark component (such as a black hole and/or a dark halo)
can easily be included in the models.

In an earlier paper (Rix et al., chapter 2 of this thesis) we described the basic principles, and imple-
mented them for the simplest case of spherical geometry. Here we focus on the axisymmetric case.
We first show how to build galaxy models from individual orbits. This provides a method to build
models with fully general DFs, without the need for analytic integrals of motion. We then discuss a set
of alternative building blocks, the two-integral and the isotropic components, for which the observ-
able properties can be computed analytically. Models built entirely from the two-integral components
yield DFs of the form f (E; Lz), which depend only on the energy E and angular momentum Lz. This
provides a new method to construct such models. The smoothness of the two-integral and isotropic
components also makes them convenient to use in conjunction with the regular orbits.

We have tested our method, by using it to reconstruct the properties of a two-integral model built with
independent software. The test model is reproduced satisfactorily, either with the regular orbits, or
with the two-integral components. This paper mainly deals with the technical aspects of the method,
while applications to the galaxies M32 and NGC 4342 are described elsewhere (van der Marel et al.
and Cretton & van den Bosch; respectively chapter 4 and 5 of this thesis).

IN order to understand the structure and dynamics of a galaxy, one needs to measure the total
gravitational potential as well as the phase-space distribution function (DF) of the constituent

stars. The DF specifies the distribution of the stars over position and velocity, and hence pro-
vides a full description of the galaxy. For a particular galaxy, one needs to explore which com-
binations of potential and DF are consistent with the available observations (surface brightness
and kinematics). Several methods have been devised to tackle this problem.

The direct calculation of the DF generally requires analytic knowledge of the integrals of
motion, and has been restricted in the past to a number of special cases: (i) spherical or other in-
tegrable potentials (e.g., Dejonghe 1984, 1986; Bishop 1987; Dejonghe & de Zeeuw 1988; Gerhard
1991; Hunter & de Zeeuw 1992); (ii) nearly integrable systems where perturbation theory can be
applied (Saaf 1968; Dehnen & Gerhard 1993); or (iii) the subset of axisymmetric models in which
the DF is assumed to depend only on E and Lz (Hunter & Qian 1993; Dehnen & Gerhard 1994;
Kuijken 1995; Qian et al. 1995, hereafter Q95; Magorrian 1995; Merritt 1996b, hereafter M96b).
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Numerical calculations of orbits in axisymmetric potentials have shown that most of the orbits
admit a third integral, which in general is not known analytically (e.g., Ollongren 1962). There
is no a priori physical reason to expect the DF to depend only on the two classical integrals, and
in fact, there are indications for both elliptical galaxies (Binney, Davies & Illingworth 1990) and
halos of spirals (Morrison, Flynn & Freeman 1990) that the DF must depend also on the third
integral. For the solar neighborhood it has been known for a long time that there must be such
a dependence (e.g., Binney & Merrifield 1998).

Schwarzschild (1979, 1982) devised an elegant method to circumvent our ignorance of ana-
lytic integrals of motion and to build numerically self-consistent equilibrium models of galaxies.
Richstone (1980, 1984) used this technique to construct axisymmetric scale-free models. It was
applied to a variety of models (spherical, axisymmetric and triaxial) by Richstone and collabo-
rators (see e.g., Richstone & Tremaine 1984, 1985; Levison & Richstone 1985, 1987; Katz & Rich-
stone 1985). Pfenniger (1984) used Schwarzschild’s method to build two-dimensional models
of barred galaxies and Merritt & Fridman (1996) and Merritt (1996a) used it to build a number
of triaxial models with cusps. Zhao (1996b) modeled the Galactic bar using similar techniques.
Schwarzschild’s original experiment reproduced self-consistently a triaxial mass distribution,
but as shown by Pfenniger (1984), one can easily include kinematic constraints in the models.
Levison & Richstone (1985) modeled the observed mean line-of-sight velocities V and velocity
dispersions � to estimate the amount of counter-rotation in some well-observed galaxies.

Recent advances in detector technology have made it possible to measure full line-of-sight
velocity profile (VP) shapes, instead of only the first two moments V and � (e.g., Franx & Illing-
worth 1988; Rix & White 1992; van der Marel & Franx 1993, hereafter vdMF; Kuijken & Merri-
field 1993). This provides further constraints on the dynamical structure of galaxies. In chapter
2, we took advantage of this development, and extended Schwarzschild’s scheme to model VP
shapes. We applied it to spherical models for the E0 galaxy NGC 2434, and showed that the
observations imply the presence of a dark halo. Here we consider axisymmetric models and
show how to use the extended Schwarzschild method to construct fully general three-integral
models that can match any set of kinematic constraints. Independent implementations of the
software were written by N.C. and R.v.d.M. A summary of this development is given by de
Zeeuw (1997). In an earlier paper (van der Marel et al. 1998, chapter 4 of this thesis; see also van
der Marel et al. 1997) we applied this modeling technique to the compact E3 elliptical M32, for
which previous modeling had suggested the presence of a central massive black hole (BH) (e.g.,
Q95; Dehnen 1995). Cretton & van den Bosch (1999, chapter 5 of this thesis) describe an applica-
tion to the edge-on S0 galaxy NGC 4342. Other groups are in the process of developing similar
techniques to the one described here (e.g., Richstone et al. 1997; see also: Emsellem, Dejonghe &
Bacon 1999; Matthias & Gerhard 1999).

This paper is organized as follows. In Section 3.1 we describe step by step how to construct
the models (see Figure 3.1). We first discuss the mass models that we consider (Section 3.1.1).
We describe how we choose a grid in integral space that yields a representative library of orbits
(Section 3.1.2), how these orbits are calculated numerically (Section 3.1.3), how their properties
are stored on a number of grids (Section 3.1.4), and how we model all aspects of the data taking
and analysis, such as seeing convolution, pixel binning, and extraction of VPs (Section 3.1.5).
We then present the method that we employ to determine the non-negative weight of each orbit
(i.e., the number of stars traveling on each orbit), such that the global superposition of orbits
produces a consistent model that best fits the observations (Section 3.1.6). Lastly, we discuss
how we include optional smoothness constraints in the models (Section 3.1.7). In Section 3.2
we describe a set of alternative building blocks, the two-integral and isotropic components, for
which the observable properties can be computed analytically. The smoothness of these com-
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ponents makes them a convenient tool to use in conjunction with the regular orbits described
in Section 3.1. Models can also be built entirely of these components, to obtain models with
DFs of the form f (E; Lz) or f (E). In Section 3.3 we describe the tests that we have performed to
establish the accuracy of our method. We present our conclusions in Section 3.4.

3.1 Construction of Dynamical Models

3.1.1 Mass Model

We study dynamical models in which all relevant quantities are axisymmetric, and symmetric
with respect to the equatorial plane z= 0. It is sufficient to have the total gravitational potential,

Φ � Φ? +Φdark, and the forces, ~rΦ available and tabulated on a grid, such that their values at
any point can be recovered through interpolation. This is important, because the structure of
real galaxies can be very complicated, and is not always well described in terms of analytical
functions.

While the method works for arbitrary radial density profiles, it proves convenient for the
purpose of presenting and testing our technique to consider models in which the mass density
of the luminous material, �?, does have an analytical form:�?(R; z)= �(s) = �0

h s

b

i��
1+ h s

b

i
���
1+ h s

c

i���; (3.1)

where s is defined as s2 = R2 + (z=q)2. This is an axisymmetric generalization of the spherical
models studied previously by, e.g., Dehnen (1993), Tremaine et al. (1994) and Zhao (1996a), and
includes the (�; �) models of Q95 as a limiting case. The model has a constant axial ratio q that
does not vary with radius. The parameters b and c are characteristic lengths. At small radii (r�
b) the density has a central cusp with logarithmic slope � (when � < 0). At intermediate radii
(b � r � c) the density falls off as �? / r�+
�, while at large radii (r � c) �? / r�+
�+��. When
viewed at an inclination angle i, the isophotes are ellipses of axial ratio q0 = (cos2 i+ q2 sin2 i)1=2.
The luminosity density is j = �?=ϒ, where ϒ is the average mass-to-light-ratio of the luminous
material, which we assume to be constant.

For these models, the gravitational potential and the associated radial and vertical forces can
all be obtained from one-dimensional (usually numerical) integrals (cf. eqs. [2.10]–[2.12] of Q95).
We calculate the potential and forces in this way and tabulate them on a fine polar (r; �) grid,
with logarithmic sampling in radius and linear sampling in the angle. These tabulated values
are used for the subsequent orbit calculations. It is straightforward to add the contributions
from a dark component to the potential and the forces, as required for models with, e.g., a BH
or a dark halo. In the case of a BH these contributions need not be tabulated, because they are
known analytically.

For density distributions that are not stratified on similar concentric spheroids one must use
more general techniques to calculate the gravitational potential and the associated forces. One
possibility to determine these, while at the same time fitting a complicated surface brightness
distribution, is to use a Multi-Gaussian Expansion (Emsellem et al. 1994). We do this in our
modeling of the S0 galaxy NGC 4342 (chapter 5). Another possibility is to obtain �? through
non-parametric deprojection of an observed surface brightness distribution (e.g., Dehnen 1995),
and calculate the potential from a multipole or other expansion (e.g., Hernquist & Ostriker 1992;
Zhao 1996a).
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FIGURE 3.1— Flowchart of the extended Schwarzschild method. We find the non-negative superposition of the
orbits with a least squares algorithm (NNLS). This combination of orbits reproduces a set of photometric (surface
brightness distribution) and kinematic constraints (VPs).

3.1.2 Choice of Orbits

The results obtained with our modeling technique should not depend on the details of the orbit
library. To achieve this, the library must represent the full variety of orbits in the given po-
tential. In this section we describe how we have chosen to select orbits in order to fulfill this
requirement.
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In axisymmetric models, all orbits conserve at least two isolating integrals of motion: the
energy E and the vertical component of the angular momentum Lz. Numerical studies have
shown that many orbits conserve an additional third isolating integral I3, which is usually not
known analytically (see e.g., Ollongren 1962; Innanen & Papp 1977; Richstone 1982; Dehnen &
Gerhard 1993). These regular orbits are specified completely by the integrals of motion, and can
be labeled by the values of E, Lz and I3.

For each energy E, there is one circular orbit in the equatorial plane, which has radius Rc

and velocity V2
c = Rc(@Φ=@R)(Rc ;0). The angular momentum of this orbit, RcVc, is the maximum

angular momentum at the given energy: Lmax(E). We sample the energies in the model by
adopting a logarithmic grid in Rc. Each Rc defines an energy E through the implicit relation
E = Φ(Rc; 0)+ 1

2 V2
c . The orbits in the model have Rc 2 [0;1). However, it is sufficient to adopt

a grid of NE values that covers only a finite range, Rc;min to Rc;max, chosen so as to contain all
but a negligible fraction of the total mass of the system. At each energy we sample the range of
possible Lz values by adopting a grid in the quantity � � Lz=Lmax(E) (� 2 [�1; 1]). Orbits with
both Lz > 0 and Lz < 0 are included in the library, but the Lz < 0 orbits need not be calculated;
they are obtained from the Lz > 0 orbits by reversing the velocity vector at each point along

FIGURE 3.2— Zero Velocity Curves are plotted for 7 values of Lz uniformly sampled between 0:05Lmax
z and

0:95Lmax
z at an energy corresponding to a circular orbit radius Rc = 2:0 (indicated by the dot). The mass model

is the one of our test model of Section 3.3.1, with no BH.
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the orbit. We have calculated orbits for N� values of �, spaced linearly between �1 and 1� �1,
where �1 is a small number. For numerical reasons, the special values � = 0 (radial orbits) and� = 1 (the circular orbit in the equatorial plane) are presumed to be represented by their closest
neighbors on the grid, but are not included explicitly.

In an axisymmetric potential the orbit reduces to a two-dimensional motion in the merid-
ional (R; z) plane in an effective gravitational potential Φeff = Φ+ 1

2 L2
z=R2 (e.g., Binney & Tre-

maine 1987, hereafter BT). For fixed (E; Lz), the position of a star is restricted to the region
bounded by the ‘zero-velocity curve’ (ZVC), defined as the curve of values (R; z) that satisfy the
equation E=Φeff, and hence vR = vz = 0. Figure 3.2 illustrates ZVCs in the meridional plane. A
regular orbit admits a third isolating integral, I3, that restricts its motion to a sub-region of the
full region of phase-space accessible at the given (E; Lz). This is illustrated in Figure 3.3, which
shows a regular orbit viewed in the meridional plane. In our method we have chosen a numer-
ical representation of I3 that can be used to label the orbit. Every orbit with Lz 6= 0 touches the
ZVC (Ollongren 1962). As suggested by Levison & Richstone (1985), we take the R coordinate
of the ‘turning point’ on the ZVC (i.e., the intersection of the orbit with the ZVC), denoted by
Rzvc, as the third parameter to specify the orbit. At every (E; Lz) there is exactly one orbit that
touches the ZVC at only one value, Rthin, of R: the so–called ‘thin tube’ orbit (see Figure 3.3). All
other regular orbits touch the ZVC for at least two values of Rzvc, one smaller than Rthin and one
larger than Rthin. To sample the orbits at a given (E; Lz), we calculate trajectories that are started
with vR = vz = 0 from the ZVC, at a given radius Rzvc (this radius determines v� according
to v� = Lz=R). Not every orbit launched in this way necessarily admits a third integral, since
irregular orbits also touch the ZVC. Our orbit library therefore includes both regular and irreg-
ular orbits, and, as we shall see in Section 3.1.3, we have found it unnecessary to distinguish
between them in all our tests and applications to date. To reduce redundancy in the library it
is sufficient to consider only orbits with Rzvc 2 [Rthin; Rmax], where Rmax is the radius at which
the ZVC intersects the plane z = 0.

For the orbit library we have chosen to use NI3
values of Rzvc. Each point (Rzvc; zzvc) on

the ZVC is determined with the help of an angle w, which is sampled linearly between 0 and
wthin (see Figure 3.3). For numerical reasons, the special values Rzvc = Rthin (thin tube orbit)
and Rzvc = Rmax (equatorial orbit) are presumed to be represented by their respective closest
neighbor on the grid, but are not included explicitly. Finding the starting point for the periodic
orbit, Rthin, is straightforward (see e.g. Pfenniger & Friedli, 1993).

It is sufficient to calculate only orbits that are started from the ZVC with z > 0. Orbits
started with z < 0 are obtained from those started with z > 0 by reversing the sign of z and vz at
each point along the orbit. Most orbits are themselves symmetric with respect to the equatorial
plane (see e.g., Figure 3.3), so that this operation is redundant. However, this is not true for, e.g.,
the orbits parented by the 1/1 resonance between the R and z-motion (see Figure 3.11 below,
or Figure 8 of Richstone 1982). Since we are only interested in constructing models that are
symmetric about the equatorial plane, we do not view the orbits started with z > 0 and z < 0
from the ZVC as separate building blocks, but instead we consider only their sum.

The grid in (Rc; �; Rzvc) completely specifies the orbit library. Appropriate choices for the
parameters that characterize this grid are discussed in Section 3.3.

3.1.3 Orbit Calculation

For each (Rc; �; Rzvc) we calculate a trajectory, started from the ZVC as described in Section 3.1.2.
We have used several standard integration algorithms, including the Bulirsch-Stoer integrator
(Press et al. 1992) and the Runge-Kutta-Fehlberg algorithm (Fehlberg 1968). We have experi-
mented with both and found equivalent results. The former algorithm was used in chapter 4.
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FIGURE 3.3— A regular orbit, the thin-tube periodic orbit, and the ZVC around them in the meridional (R; z)
plane for the same mass model as in Figure 3.2. The radii Rmin, Rmax and Rthin are indicated (see text). The circular
orbit is represented by a black dot. The different starting points on the ZVC are shown with open dots and the
corresponding angles w and wthin are indicated.

Here we use the Runge-Kutta-Fehlberg algorithm.

The results of the orbit calculations were used to approximate the ‘orbital phase-space den-
sity’ for each trajectory. Each phase-point along a calculated orbit was assigned a weight equal
to the time step at that point, divided by the total integration time.

This procedure results in density distributions in phase-space, DFtraj and its corresponding
spatial density �traj. Orbits were calculated in the meridional plane, but all six phase-space
coordinates are needed. The azimuthal velocity v� = Lz=R is completely specified. However,
for projection onto the sky, the azimuthal angle � 2 [0; 2�] is also required. The distribution of
stars over � is homogeneous, because of the assumed symmetry. The weight at each time step
was therefore divided into a number of equal ‘sub-weights’, and each was assigned a random�. Furthermore, each sub-weight was divided in two, and one of the two parts was assigned
phase-coordinates with (z; vz) multiplied by�1. This corrects for the fact that only orbits started
with z > 0 from the ZVC were calculated (cf. Section 3.1.2). The trajectories should be integrated
long enough so that the orbital phase-space densities no longer change significantly with time.
Pfenniger (1984) proposed to check directly for the convergence of the orbital mass distribution.
However, this may take a very long time, especially for orbits that are unusually close to a
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high-order resonance, for orbits at very large radii or at very small radii close to a BH, and for
irregular orbits (see also Merritt & Fridman 1996). We have used a cruder approach, in which we
calculated each orbit for a fixed number (� 200) of characteristic orbital periods. We found this
to be sufficient for our purpose; longer integrations yield final models that are not significantly
different. This is because the ‘noise’ in our modeling is dominated by the representation of
phase space through a coarse discrete grid.

Orbits can have sharp edges in both the spatial and velocity dimensions. We found that
a simple scheme to obtain smoother densities yielded slightly more accurate results for the fi-
nal orbit superposition. To take into account the fact that each energy E in the orbit catalog
represents all energies in some bin [E1; E2] around it (defined by the choice of energy grid), a
random energy Ẽ was drawn from the range [E1; E2] for each normalized time step. The cor-
responding phase-coordinates (~r; ~v) were then translated to the energy Ẽ, by replacing them by
([R̃c=Rc]~r; [Ṽc=Vc]~v), where Rc, R̃c and Vc, Ṽc are the radii and circular velocities of the circular
orbits at the energies E and Ẽ, respectively. This “dithering” approach is only approximately
correct (it assumes that the potential is locally scale-free), but was found to work well in practice.

3.1.4 Storing the Orbital Properties

For each orbit we store both the intrinsic properties and the projected properties. The intrinsic
properties are necessary to test for consistency of the final model. We store �traj on an (r; �) grid
in the meridional plane, logarithmic in r and linear in � 2 [0; �2 ]. Angles � > �

2 need not be
stored separately, because of symmetry with respect to the equatorial plane. We also store the
lowest-order velocity moments of each orbit (�trajhvii; �trajhviv ji; i; j = r; �; �) on the same grid,
so as to be able to study the intrinsic dynamical structure of the final model.

The projected properties are necessary for comparison to observable quantities, such as the
projected surface brightness and line-of-sight VP shapes. Only three coordinates of phase-space
are available for comparison with observations: the projected positions x0, y0 (which we choose
to be aligned with the photometric major and minor axis), and the line-of-sight velocity, vlos(�
vz0). Given an inclination angle i of the galaxy (i = 90� means edge-on), these are related to the
usual cylindrical coordinates (R; z; �) in the following way:

x0 = R sin�;
y0 = �R cos i cos�+ z sin i;

vlos = (vR cos�� v� sin�) sin i+ vz cos i: (3.2)

To have the projected properties of the orbits accessible, we store their phase-space densities
both on an (r0; �0) grid on the projected plane of the sky (with similar properties as the intrinsic
(r; �) grid), and on a Cartesian (x0; y0; vlos) data cube (see Section 3.1.5). The former is used to
reconstruct the projected surface density of the model. The latter is used to model observed
kinematical quantities. The spatial grid size (∆x;∆y) of the (x0; y0; vlos) cube is chosen to provide
2–5 times higher spatial resolution than the pixel size of the available kinematical observations.
If observations with very different resolution are available for a galaxy (e.g., very high spatial
resolution HST data in the central arcsec, and lower-resolution ground-based data out to an ef-
fective radius), it is best to store the data on two or more cubes with different spatial grid sizes
and extents. During the orbit calculations we then store the phase-space densities simultane-
ously on all (x0; y0; vlos) cubes. Only the x0 � 0 half of each cube needs to be stored, because each
orbit has the same weight at (x0; y0; vlos) as at (�x0;�y0;�vlos). The size ∆v of the velocity bins
on the (x0; y0; vlos) cube(s) must be chosen to provide a proper sampling of the observed VPs. In
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FIGURE 3.4— VPs as a function of line-of-sight velocity vlos (in km s�1) for the two orbits of Figure 3.3. The regular
and thin orbits are shown in the top and bottom panels, respectively, for viewing through (100-square) cells along
the major axis (left) and minor axis (right), respectively. The orbits were not convolved with a PSF. For each panel,
different lines correspond to cells at different distances r from the center: the full line corresponds to the central cell
(r = 000), the dotted line to r = 100, the short dashed line to r = 200 and the dot-short dashed line to r = 300.
practice we use � 50–100 bins between (�N��max;N��max), where �max is the largest observed
dispersion, and N� = 4–8.

3.1.5 Modeling Observed Kinematical Quantities

Point-spread-function (PSF) convolution is essential when comparing model quantities with
observed kinematical quantities in the central regions of galaxies. Seeing convolution correlates
information in the two spatial dimensions x0; y0, but not in vlos:

Fconv(x00; y00; vlos) = F
 PSF= ZZ
F(x0; y0; vlos) PSF(x0 � x00; y0� y00) dx0 dy0; (3.3)

where F is the function to convolve, PSF is the point-spread function, and Fconv is the result of
the convolution of F with the PSF. The final model is a linear superposition of the orbits, so the
(x0; y0; vlos) cubes for each orbit may be individually convolved with the PSF. As in chapter 2, we
do the convolution for each velocity slice efficiently by multiplications in Fourier space, using
Fast Fourier Transforms (e.g., Press et al. 1992).
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Kinematical data is generally obtained either through small, discrete apertures, along a
number of slit-positions, or may derive from two-dimensional integral field spectroscopy (e.g.,
Bacon et al. 1995). Any setup of this kind can be simulated by our models, including possible
spatial binning along a slit. For each observational ‘aperture’, we choose the (x0; y0; vlos) cube
with the most appropriate cell size, convolve it with the relevant PSF, and bin the results spa-
tially over the aperture size. This yields a one-dimensional velocity histogram, for each orbit
and for each observation. Examples of such ‘orbital VPs’ are shown in Figure 3.4.

Kinematical observations provide information on the line-of-sight VPs

VP(x0; y0; vlos) = ZZZ
DF dvx0 dvy0 dz0; (3.4)

at different positions (x0; y0) on the projected face of a galaxy. In practice, the normalization
of VP(x0; y0; vlos) is based on the photometric data. It is often useful to parametrize observed
VPs by a few numbers. A common choice for such a VP parametrization is the Gauss-Hermite
expansion. We follow the notation of vdMF, in which the VP is represented as

VP(vlos) = �(w)� N

∑
l=0

hl Hl(w); (3.5)

with

w = (vlos � V)=�; �(w)= 1p
2� e�w2=2: (3.6)

The hl are the Gauss-Hermite moments (hereafter GH-moments) defined by

hl = 2
p� Z 1�1VP(vlos) �(w) Hl(w) dvlos (l = 0; : : : ; L): (3.7)

Each Hl is a Hermite polynomial (see Appendix A of vdMF). The quantities V and � charac-
terize the ‘weighting function’, �(w)Hl, in the integral (3.7). When describing observations, V
and � are usually taken to be the velocity and dispersion of the Gaussian that best fits the ob-
served VP. With this choice, h1 � h2 � 0. GH-moments of higher order describe deviations from
a Gaussian. Only the moments of order L � 6 are generally measured from galaxy spectra, due
to the finite spectral (and thus velocity) resolution of the observations.

If we envision galaxies as consisting of orbital building blocks, then the overall VP mea-
sured for a given observation is just the superposition of the individual orbital VPs. Similarly,
the observed GH-moments are just a linear superposition of the GH-moments of the individ-
ual orbital VPs, provided that the observed V and � for the given observation are used in the
weighting function �(w)Hl(w). Thus, as described in detail in chapter 2, to fit the kinematical
observations we may restrict ourselves to solving a linear superposition problem for the Gauss-
Hermite moments. The constraints are then that h1 = h2 = 0, and the hl with l � 3 should equal
their observed values. It must be stressed that this approach is general, and assumes neither
that the observed VPs are well-described by the lowest-order terms of a GH-series, nor that the
orbital VPs are well-described by the lowest-order terms of a GH-series. Nonetheless, if a full
non-parametric estimate of the observed VPs is available there is no need to restrict the analysis
to the lowest-order GH-moments. Our technique can just as easily fit the individual velocity
bins of the observed VPs.

3.1.6 Fitting the Constraints

Constructing a model consists of finding a weighted superposition of the stellar orbits in the
library that reproduces two sets of constraints:
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duce the initially assumed luminous stellar density �?(R; z) (Section 3.1.1), for each cell of
the meridional (r; �) grid, for each cell of the projected plane (r0; �0) grid, and for each aper-
ture for which there is kinematical data. In theory, it is sufficient to fit only the meridional
plane masses, because projected densities are then fit automatically. In practice this might
not exactly be the case, because of discretization. To circumvent this, the projected masses
may be included as separate constraints. Note that for axisymmetric models the projected
density does not uniquely specify the intrinsic density (e.g., Rybicki 1986; Gerhard & Bin-
ney 1996).� Kinematical constraints. The model should reproduce the observed kinematics of the
galaxy, including VP shapes. As discussed, we express this as a set of linear constraints
on the GH-moments of the VPs (chapter 2).

Finding the orbit superposition that best fits these constraints amounts to solving a linear
problem, which can be written in matrix notation as B~
 = ~c (chapter 2). The matrix B contains
the mass that each orbit contributes to each relevant intrinsic or projected grid cell, and the GH-
moments that each orbit contributes to each kinematical observation. The vector ~c contains the
mass predicted by �?(R; z) for each relevant intrinsic or projected grid cell, and the observed
GH-moments for all kinematical observations; the vector ~
, which is to be solved for, contains
the weight of each orbit, i.e., the total mass of stars on each orbit. These weights should be non-
negative. Using the terminology introduced in Section 3.1.5, the basic Schwarzschild equation
becomes

Norbits

∑
j=1


 jVPi j = VPi; (3.8)

with VPi j the individual VP of orbit j at constraint point i, and VPi the observed VP for the same
constraint point.

The superposition problem can be expressed as a non-negative least squares (NNLS) fit for
the above matrix equation. We have used the NNLS routine of Lawson & Hanson (1974) to
solve it. The NNLS routine finds a combination of non-negative orbital occupancies (which
need not be unique) that minimizes the usual L 2 norm jjB~
 �~c jj. This norm can be viewed as
a �2 quantity that measures the quality of the fit to the constraints. The NNLS routine always
finds a best solution. It need not be acceptable in light of the observations; this must be assessed
through the �2 of the best fit, and by comparison of the model predictions to the constraints.

As is customary in least-squares fitting, the model predictions for each constraint and the ac-
tual constraint values (the elements of the vector ~c) are weighted by the errors in the constraints.
Observational errors are available for the kinematical constraints. In principle one would like
the consistency constraints to be fit with machine precision. It turns out that this is generally
unfeasible, because of discretization. It was found that models with no kinematical constraints
could at best simultaneously fit both the intrinsic and the projected masses with a fractional
error of � 5� 10�3 (when using � 1000 orbits). We therefore assigned fractional errors of this
size to the masses in the consistency constraints. In principle one would like to include also the
observational surface brightness errors in the analysis. Unfortunately, this requires the explo-
ration of a large set of three-dimensional mass densities (that all fit the surface photometry to
within the errors), which is prohibitively time-consuming.
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3.1.7 Regularization

Our orbit superposition models are not generally smooth in integral space, as a result of the
‘ill-conditioned’ numerical nature of the NNLS matrix equation that is being solved. There are
no physical theories that describe exactly how smooth the DF of a stellar system should be, but
some degree of smoothness should be expected. Our technique can be extended in a straight-
forward manner to yield smooth solutions, by adding linear regularization constraints to the
NNLS matrix equation (e.g., Press et al. 1992; Merritt 1993). This has the same effect as the addi-
tion of ‘maximum entropy’ constraints (Richstone & Tremaine 1988). For linear regularization,
each regularization constraint must be of the form

∑
k

sk;l 
k = 0� ∆; (3.9)

thus providing an extra row to the matrix equation. The 
k are the orbital weights that make
up the vector ~
, and l is the number of the regularization constraint. The parameter ∆ sets
the amount of regularization. Models with ∆ !1 have no regularization, while models with
∆! 0 give infinite weight to the regularization constraints. Alternatively, one may view this as
adding a term � jjS~
jj to the norm jjB~
 �~c jj that is minimized by the NNLS routine, where S

is the matrix with elements fsk;lg, and � � 1=∆ is a regularization parameter (Zhao 1996b).
Many choices are possible for the matrix S, with the only requirement that the norm jjS~
jj

should provide a measure of the smoothness of the solution. Our choice is based on the fact
that we consider the NNLS solution 
(Rc; �; Rzvc) to be “smooth” if the second derivatives of
the (unitless) function 
(Rc; �; Rzvc)=
0(Rc) are small. Here the “reference weights” 
0(Rc) are
a rough approximation to the energy dependence of the model. These are determined before-
hand, e.g., by studying the spherical isotropic limit of the given mass density. We view the
three-dimensional numerical grid in integral space as a Cartesian lattice, and we approximate
the second derivatives by second order divided differences (eq. 18.5.10 of Press et al. 1992).
We assume that the distance between adjacent grid points on the lattice is unity, independent
of the carthesian direction in which they are adjacent. This (arbitrarily) solves the problem
that the axes of the grid in integral space have different units and yields three regularization
constraints for each grid point (i; j; l) that is not on a boundary: �
i�1; j;l + 2
i; j;l � 
i+1; j;l = 0,�
i; j�1;l+ 2
i; j;l � 
i; j+1;l = 0, and �
i; j;l�1+ 2
i; j;l � 
i; j;l+1 = 0.

3.2 Two-integral Components and Isotropic Components

3.2.1 Definition

Individual regular orbits correspond to building blocks with a DF proportional to �(E� E0) �(Lz�
Lz;0) �(I3 � I3;0), for given (E0; Lz;0; I3;0). These are not the only building blocks that can be used
to construct models. One may also use ‘two-integral components’, which correspond to the DF

f �[E0;Lz;0] � C[E0;Lz;0] �(E� E0) �(Lz � Lz;0); (3.10)

or ‘isotropic components’, which correspond to the DF (cf. Richstone 1982)

f �[E0] � C[E0] �(E� E0): (3.11)

We choose the normalization coefficients C[E0;Lz;0] and C[E0] such that the total mass of each
component is equal to unity; explicit expressions are derived in Appendix 3.A.1.

The two-integral components are smoother building blocks than the regular orbits, since
they fill completely the ZVC and do not have the sharp edges of the regular orbits. It is useful
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to view them as a particular combination of all orbits that could be numerically integrated
at the given (E0; Lz;0), both regular orbits that fill only a subset of the area enclosed by the
ZVC (therefore admitting 3 independent integrals of motion) and irregular orbits that occupy a
larger area (admitting only 2 integrals; note that an irregular orbit does not necessarily fill the
entire phase-space region defined by (E0; Lz;0); see Merritt & Valluri 1996 for a discussion of the
triaxial case). Similarly, an isotropic component is a weighted combination of all two-integral
components (i.e., all orbits) at the given energy E0. The region in space occupied by such a
component is bounded by the equipotential surface Φ(R; z)= E0.

The two-integral and isotropic components are useful, because their properties can be cal-
culated semi-analytically. By using only two-integral components in the NNLS orbit superpo-
sition, one can construct f (E; Lz) models for arbitrary spheroidal potentials. This provides a
new and convenient way of constructing such models, which adds to the several techniques
already in existence for this purpose (Hunter & Qian 1993; Dehnen & Gerhard 1994; Kuijken
1995; Magorrian 1995; M96b). Using only isotropic components in the NNLS orbit superposi-
tion is generally less useful, because these components follow equipotential surfaces, which are
rounder than isodensity surfaces. Thus, they cannot be used to build self-consistent isotropic
axisymmetric models. In chapter 2, we describe how to use them to build spherical isotropic
models. Alternatively, the two-integral and isotropic components may be used in the superpo-
sition in conjunction with the regular orbits. This has two advantages. First, these components
are smoother, and their inclusion therefore reduces numerical noise that arises from the discrete
representation of phase space (see also Zhao 1996b). Second, addition of these components
provides a way to include all irregular orbits in the models.

FIGURE 3.5— VPs of an individual two-integral component with the same (E; Lz) as the orbits in Figure 3.3, viewed
along the major axis (left) and minor axis (right), respectively. Line types are the same as in Figure 3.4. However,
unlike in Figure 3.4, these VPs were calculated for a point along either axis, and were not ‘integrated’ over cells.
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3.2.2 Velocity Profiles

The VP of a two-integral component is obtained by substitution of the DF of equation (3.10) into
equation (3.4). The resulting integral may be written as

VP[E0;Lz;0](x
0; y0; vlos) = C[E0;Lz;0]

Z
dz0 J[E0;Lz;0]; (3.12)

where

J[E;Lz] � ���@(vx0 ; vy0)@(E; Lz)

���
[E;Lz]

; (3.13)

is the Jacobian for the change of variables from (vx0 ; vy0) to (E; Lz). In Appendix 3.A.2 we give an
explicit expression for this Jacobian. The integration in equation (3.12) extends over those z0 for
which there exist velocities (vx0 ; vy0) such that E(x0; y0; z0; vx0 ; vy0 ; vlos)= E0 and Lz(x0; y0; z0; vx0 ; vy0 ;
vlos) = Lz;0. Similarly, the VP for an isotropic component may be written as

VP[E0](x
0; y0; vlos) = C[E0]

Z
dz0 Z dLz J[E0;Lz]: (3.14)

The projected density for a two-integral or isotropic component, at projected position (x0; y0), is
obtained as the integral of VP(x0; y0; vlos) over vlos.

Equations (3.12) and (3.14) can be used to calculate the VPs of the two-integral and isotropic
components through numerical quadratures, without the need for calculating orbital trajecto-
ries. The only difficulty lies in finding the domain of integration in z0. We illustrate this for the
case of an edge-on system (i = 90�). In this case J[E0;Lz;0] = (z0vy0)�1, with

vy0 =r2(E0 �Φ)� �Lz;0+ x0vlos

z0 �2 � v2
los

(3.15)

(cf. eqs. [3.32,3.33]). We will refer to the expression under the square-root as W. The integration
in equation (3.12) extends over those z0 for which W � 0. We find the roots of W numerically. We
start by finding the roots of 2(E0�Φ)� v2

los = 0. This gives an interval that encompasses all real
roots of W, because 2(E0�Φ)� v2

los �W. Then we subdivide this interval in many (� 100–1000)
small segments, and check whether the sign of W differs at the ends of each segment. If it does,
we find the root between these two points through bisection. The continuity of the resulting VP
was used to check whether all required integration domains in z0 were found. For the potentials
studied here, we typically find two or four roots.

The VP calculation for edge-on isotropic components is less complicated. The Jacobian is
quadratic in Lz, and can be written as J[E0;Lz] = [(L+z � Lz)(Lz � L�z )]�1=2. One can show that L�z
and L+z are real if 2(E0�Φ)� v2

los � 0. In this case the integral over dLz in equation (3.14) extends
from L�z to L+z , and is always equal to �. Thus, if there is a z0max for which 2(E0 �Φ)� v2

los = 0,
then

VP[E0](x
0; y0; vlos) = 2�C[E0]z

0
max: (3.16)

If there is no such z0max (i.e., if vlos exceeds the escape velocity at the tangent point), then
VP[E0](x

0; y0; vlos) = 0.

Figure 3.5 shows examples of the VP of a two-integral component along the major and minor
axes of an edge-on system.
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FIGURE 3.6— The DF f (E; Lz) for the test model with a 3� 106 M� BH described in Section 3.3.1. The DF from the
semi-analytical HQ algorithm and from the extended Schwarzschild technique, using only two-integral components,
are plotted as function of the component number. The components run in order or energy, and in order of Lz for each
energy; this causes the jagged appearance of the curves. The two curves mostly overlap in the comparison interval
(dashed vertical lines). The insert shows the relative difference (in per cent) between the two DFs. The agreement
between the two methods of calculating the DF is acceptable.

3.3 Tests

3.3.1 The Test Model

The most useful tests for our axisymmetric implementation are those for which the results can
be compared to analytical results, or to semi-analytical or numerical results that were obtained
with an independent algorithm. Models with f (E; Lz) DFs have been widely studied in the past
five years (e.g., Evans 1993, 1994; Hunter & Qian 1993; Dehnen & Gerhard 1994; Evans & de
Zeeuw 1994; Kuijken 1995; Q95; Magorrian 1995; M96b). Their properties can be derived semi-
analytically, and a variety of algorithms and numerical implementations have been presented to
derive the DF f (E; Lz) that generates a given luminous mass density �?(R; z) in a given potential
Φ(R; z). These models therefore provide an ideal test case. Here we present two tests where we
use our method to reproduce the properties of an edge-on f (E; Lz) model.

We consider a model with a luminous mass density of the form (3.1), with parameters: � =�1:435, � =�0:423, 
 = � = 2:0, � =�1:298, b = 0:5500, c= 102:000 , q = 0:73, �0 = j0ϒM�=L�;V,
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j0 = 0:463� 105L�;V pc�3 (for an assumed distance of 0:7 Mpc). We calculate the potential of
the test model, Φ � Φ? +Φdark, under the assumption that ϒ = 2:5, and with the option of a
nuclear BH (Φdark =�GMBH=r) of mass MBH = 3� 106 M�. All these parameters are based on
the application of our technique to the case of the galaxy M32, which was presented in chapter
4. This analogy with M32 was chosen mainly to demonstrate the accuracy of our method for a
realistic galaxy model.

The luminous mass density �?(R; z) and potential Φ(R; z) determine uniquely only the even
part feven(E; Lz) of the DF, f (E; Lz) � feven(E; Lz)+ fodd(E; Lz). For our test model we specify
(arbitrarily) the extreme case that fodd(E; Lz) = feven(E; Lz) for Lz > 0, and that fodd(E; Lz) =� feven(E; Lz) for Lz < 0 (and by definition, fodd(E; 0)= 0). Thus, the f (E; Lz) test model is ‘max-
imally rotating’: all the stars are rotating in the same sense and have Lz > 0.

First, the unique f (E; Lz) DF of the test model was calculated using the approach described
in chapter 4. We will refer to the resulting DF as DFHQ (for Hunter & Qian, 1993). The kinemat-
ical predictions (VPs, GH-moments, etc.) for the test model DF were subsequently calculated
using the expressions and software of Q95. The Jeans equations were used as in chapter 5 to
compute the intrinsic second-order velocity moments hv2�i and hv2

ri = hv2�i in the meridional
plane. Our tests in Sections 3.3.2 and 3.3.3 are aimed at assessing how well our algorithm can
reproduce the test model properties thus calculated with independent methods. This allows
us to test all key aspects of the orbit model construction, including the sampling of integral
space, orbit calculation, discreteness effects of the spatial grids, projection into the data cubes,
seeing convolution, and the NNLS algorithm. Hence, it is no great drawback that our tests are
restricted to two-intergal models.

3.3.2 Reproducing the Test Model with Two-integral Components

We first describe tests of the extended Schwarzschild technique with only two-integral compo-
nents. We used an (E; Lz) grid as described in Section 3.1.2, with NE = 70, Rc;min= 10�4:2 arcsec,
Rc;max = 104:2 arcsec, N� = 19, and �1 = 0:01. Only components with Lz > 0 were included in
the superposition; the resulting models are therefore by definition maximally rotating with a
DF of the form f (E; Lz). The DF is determined uniquely by the mass density. Kinematical con-
straints are therefore not required in the NNLS fit, but only constraints on the consistency of
the stellar luminosity distribution (see Section 3.1.6). For these, the polar (r; �) and (r0; �0) grids
in the meridional plane and on the projected plane of the sky (see Section 3.1.4) were chosen to
have 16 bins in the radial coordinate between Rc;min and Rc;max, and N� = N�0 = 7 bins in the
angular coordinate (a rather modest resolution, but similar tests with finer grids yielded similar
accuracies). We semi-analytically (eq. [4-140b] of BT) calculated the isotropic DF f (E) for the
spherical version of the test model, and used the corresponding masses on our energy grid as
reference weights for the regularization (see Section 3.1.7).

The NNLS algorithm yields the mass on each (E; Lz) grid cell, i.e., the integral of dM =dE dLz

over the grid cell. It does not directly yield the DF f (E; Lz), which by definition is the density in
the six dimensional phase-space. However, for a two-integral model there is a simple relation
between dM =dE dLz and the DF f (E; Lz), as derived in Appendix 3.B.1. With equation (3.39)
the NNLS fit provides an estimate of the DF, which we will denote DFNNLS. We compare it with
DFHQ on the same grid, but to avoid possible border effects, we restrict the comparison to the
NE = 50 energy grid points with Rc between 10�3 and 103 arcsec (see Figures 3.6 and 3.7 for the
test models with and without a central BH, respectively).

The DFs agree well over 10 and 20 orders of magnitude, respectively. The inserts show the
percentage errors in the DF calculation. Note that the largest errors occur at grid points that
carry little mass, e.g., at large radii. The orbit library in these figures is numbered as follows.
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FIGURE 3.7— Similar to Figure 3.6, but for the same model without a central BH.

For each value of Rc(E) j of the energy, Lz runs monotonically from Lz;min to Lz;max, covering
N� (= 19 here) components. The next orbit corresponds to Lz;min of Rc(E) j+1, etc. This choice
of numbering causes the jagged appearance of the DF. Q95 plotted f (E; Lz = 0) and f (E; Lz =
Lz;max) as a function of E (see their Figure 8), and such curves would appear as envelopes in
Figures 3.6 and 3.7.

To assess the influence of smoothing on the accuracy with which our technique recovers the
DF, we have studied the dependence of the RMS logarithmic residual

RMSlog DF � h 1

NEN� NE

∑
i=1

N�
∑
j=1

(log DFNNLS � log DFHQ)2
i1=2; (3.17)

on the regularization parameter ∆ (see Section 3.1.7). When ∆ tends to zero, the regularization
constraints receive infinite weight. This yields a very smooth DF, but one that doesn’t fit the
consistency (mass) constraints very well, and therefore doesn’t approximate DFHQ very well.
At the other extreme, when ∆ is very large there is hardly any smoothing, and the mathemati-
cally ill-conditioned nature of the problem yields a very jagged solution that also doesn’t match
DFHQ. Figure 3.8 shows RMSlog DF(∆) for the following three cases: (a) the case in which only
the masses on the meridional plane (r; �) grid are included as constraints in the NNLS fit; (b) the
case in which only the masses on the projected plane (r0; �0) grid are included as constraints; and
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(c) the case in which both are included as constraints. In principle, deprojection of the projected
mass density is unique for an edge-on system, so these approaches should recover equivalent
results. However, this is not true in practice because of discretization effects. In all three cases,
RMSlog DF has a minimum near log∆ � 2:0, which is thus the optimum smoothing. The value
of RMSlog DF at the minimum is only mildly different for the different cases, but (a) yields the
slightly better results. We have therefore adopted case (a) for all our further test calculations.
The minimum RMSlog DF is � 0:02; this corresponds to a 5% RMS difference between DFNNLS

and DFHQ. The mass-weigthed RMS difference,

RMSDF = "ZZ DFHQ

hDFNNLS �DFHQ

DFHQ

i2
d3~x d3~v� ZZ

DFHQ d3~x d3~v#1=2; (3.18)

for the model with the optimum smoothing is also � 5%. This level of accuracy in the deter-
mination of the DF is similar to that obtained with other techniques (see Gerhard et al. 1998;
Matthias & Gerhard 1999).

Figure 3.9 compares the predictions for the meridional plane velocity moments to the results
of the Jeans equations, for the model without a BH and with the optimum smoothing. The top
and bottom row of the figure show hv2�i1=2 and hv2

r i1=2= hv2�i1=2, respectively. We plot separately
each angular sector of the polar grid in the meridional plane. In each row, the first panel is
closest to the symmetry axis and the last one is closest to the equatorial plane. Full lines show
predictions of the extended Schwarzschild technique, and dashed lines the results obtained
from the Jeans equations. The model predictions were interpolated between the (E; Lz) grid
points to get smoother results. Overall the agreement is very good, and better than 1%. This
is better than the � 5% agreement in the DF, because the velocity moments are integrals over
the DF (such that errors tend to cancel). The errors in the velocity moments are largest near
the symmetry axis, since in the extended Schwarzschild technique only a few components with
very low Lz can reach this region of the meridional plane. However, the errors are always�< 2 km s�1.

3.3.3 Reproducing the Test Model with Regular orbits

The next step in our testing procedure is to try to reproduce the properties of the test model with
regular orbits, rather than two-integral components. The first obvious question is whether we
can give the orbit superposition algorithm constraints that force it to generate a model with a DF
of the form f (E; Lz), which can then be compared to the distribution function DFHQ calculated as
in Section 3.3.1. Unfortunately, there is no set of simple linear kinematic constraints that force
the NNLS algorithm to produce an f (E; Lz) model. One can certainly impose the necessary
conditions that hv2

ri = hv2�i and hvrv�i = 0, but these conditions are not sufficient; an f (E; Lz)
model is fully determined only by constraints on all its higher order velocity moments (e.g.,
Magorrian & Binney 1994).

We therefore restrict ourselves here to a simpler test. We calculate an orbit library in the
gravitational potential of the test model, but do not do a subsequent NNLS fit. Instead, we
fix the orbital weights 
 j to those appropriate for an f (E; Lz) model, and merely calculate the
projected kinematical quantities for some observational test setup, given these orbital weights.
The results are compared to the same quantities but now calculated from DFHQ as described in
Section 3.3.1. This tests all of the important parts of our method that were not already tested by
the calculations in Section 3.3.2, namely the orbit calculation, the projection into data cubes and
VPs, and the seeing convolution.
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FIGURE 3.8— The RMS logarithmic residual RMSlog DF for the test model of Figure 3.7, as function of the logarithm
of the regularization parameter ∆. The residual measures the difference between the DF as calculated with the semi-
analytical HQ algorithm, and as calculated with the extended Schwarzschild technique, using only two-integral
components. The different line-types indicate the cases in which only masses in the meridional plane are included
as consistency constraints (dotted line), in which only projected plane masses are included (dashed line), or in which
both are included (full line with dots).

The main difficulty with this test is that it requires knowledge of the orbital weights for an
f (E; Lz) model, i.e., of the differential mass density dM =dE dLz dRzvc, on the grid of quantities
(E; Lz; Rzvc) that we use to sample orbit space (cf. Section 3.1.2). This is not as straightforward as
the calculation of dM =dE dLz described in Appendix 3.B.1. In fact, the orbital weights can only
be easily calculated if an explicit expression exists for the third integral, which is not the case for
our test model. However, if the model has a central BH then at small radii, or high energies, the
potential is Keplerian and spherical (as it is at large radii, or low energies, because of the finite
mass of the model). In this potential, all the integrals of motion are known, and these limits are
therefore analytically tractable.

At high energies (small radii) the test model reduces to a scale-free axisymmetric mass den-
sity cusp with an f (E; Lz) DF in a spherical Kepler potential. This limit was studied analytically
by de Bruijne, van der Marel & de Zeeuw (1996). In this limit, the normalized distribution
of mass over (�; Rzvc=Rc) at fixed energy, which we will denote as h(�; Rzvc=Rc), is a known
function that is independent of energy. An explicit expression for h(�; Rzvc=Rc) is derived in
Appendix 3.B.2. We use this result to approximate the differential mass density of our test
model, restricting ourselves to the case with a 3� 106 M� BH. First, we calculate the differential
mass density of the model over energy alone: G(E) � dM =dE = R

[dM =dE dLz] dLz; where
dM =dE dLz is obtained from equation (3.39). Then, we assume that the distribution of mass
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FIGURE 3.9— Comparison of meridional plane velocity moments, calculated either with the extended
Schwarzschild technique using only two-integral components (full curves), or with the Jeans equations (dashed
curves), for the model of Figure 3.7. The top and bottom row of panels show hv2�i1=2 and hv2

r i1=2 = hv2�i1=2, respec-
tively. The meridional (r; �) plane is divided in 7 sectors. In each row, the first panel is the sector closest to the
symmetry axis and the last panel is the sector closest to the equatorial plane. The discrepancies are largest near the
symmetry axis, but are acceptable everywhere.

over (Lz; Rzvc) at fixed energy is always the same as in the high-energy limit, so that

dM

dE d�d(Rzvc=Rc)
= G(E) h(�; Rzvc=Rc): (3.19)

This relation is only correct at asymptotically high energies. We found it was sufficiently good
at energies with Rc(E) �< 0:500, which is where the mass density of the model is a pure power
law and where the potential is Keplerian.

For our test we picked an observational test-setup with the same set of 8 square apertures,
roughly aligned on the major axis, as used by van der Marel et al. (1997b) in their HST observa-
tions of M32 (see their Figure 3). These apertures all lie at projected radii R �< 0:500, so most of
the light seen in these apertures originates from stars with energies for which our approxima-
tion of the differential mass distribution is adequate. We chose the same PSF as in van der Marel
et al. (1997b), which is a sum of three Gaussians that approximates the HST PSF. Subsequently,
we picked a grid in (E; Lz; Rzvc) space with NE = 20, N� = 7, and NI3

= 7, and we calculated an
orbit library for this grid. Then finally we calculated orbital weights from equation (3.19), by in-
tegrating at each point of our (E; Lz; Rzvc) grid the approximation dM= [dE d�d(Rzvc=Rc)] over
the corresponding grid cell. Predictions for the projected kinematics then follow by superposing
the VPs for individual orbits in the library as in equation (3.8).

Figure 3.10 shows the results thus obtained for the kinematical quantities V; �; h3; : : : ; h6. As
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FIGURE 3.10— Kinematical predictions for the edge-on f (E; Lz) test model with a 3� 106 M� BH discussed in Sec-
tion 3.3.3. The kinematical apertures are the same as for the HST observations of M32 by van der Marel et al. (1997b).
They are aligned along the major axis. Data points are plotted equidistantly along the abscissa. Dotted and dashed
curves are predictions obtained with the extended Schwarzschild technique, using the software of Cretton and van
der Marel, respectively. The solid curves show predictions obtained from direct integration over the DF, using the
software of Q95. The three curves agree well, demonstrating the numerical accuracy of the orbit superposition
technique.

mentioned in the Introduction, independent software implementations of the extended Schwarz-
schild method were programmed by both N.C. and R.v.d.M. Dotted curves in the figure show
the results from N.C.’s software, while dashed curves show the results from R.v.d.M.’s software.
For comparison, solid curves show the results obtained by direct integration over the known
DFHQ, using the (completely independent) software of Q95 as described in Section 3.3.1. The
RMS difference between the different predictions is � 2 km s�1 in V and �, and � 0:01 in the
Gauss-Hermite moments. Kinematical data typically have larger observational errors than this,
so the numerical accuracy of our method is entirely adequate for modeling real galaxies.

Finally, let us say a few words about the orbits in the library for this test model. Figure 3.11
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shows the orbits in the library at the energy corresponding to Rc = 0:2500. Figure 3.12 shows
the orbits at the same Rc, in the same model, but now without a BH. The orbits are all regular
and have a stable periodic parent. The parents were determined using surfaces-of-section (see
also: Richstone 1982; Lees & Schwarzschild 1992; Evans 1994; Evans, Häfner & de Zeeuw 1997)
and are indicated in the figures. Most orbits in Figures 3.11 and 3.12 are tubes, and are parented
by the thin tube. Orbits that are not tubes are indicated. A minority of the low j�j orbits in
Figure 3.12 is parented by higher-order resonances, such as the 3:2 and 4:3 (being the ratio of
the R- and z-frequencies of the parent). By contrast, most of the low j�j orbits in Figure 3.11 is
parented by the 1:1 resonance. Thus the orbital structure of the models with and without BH is
very clearly different. An analysis of the orbital structure of these models as a function of the
BH mass is beyond the scope of the present paper, but does seem worth further study.

3.4 Concluding Remarks

In this paper we have described an extension of Schwarzschild’s method for building anisotropic
axisymmetric dynamical models of galaxies. We compute a set of orbits in a given mass model
and find the non-negative superposition of these orbits that best reproduces a set of (photomet-
ric and kinematic) constraints. Our method includes the full VP shape as kinematic constraint.
We parametrize the VP using a GH expansion so that it is specified by a few numbers. The
modeling method is valid for any kind of parametric (or non-parametric) VP representation
and properly takes into account the observational setup (seeing convolution, pixel binning, er-
ror on each constraint). We obtain smooth models by imposing a regularization scheme in
integral-space.

In chapter 2, we have described in detail several aspects of this method and applied it to
the spherical case. However, it is not restricted to this simple geometry, and we have described
here the axisymmetric extension. The mass model used to compute the orbit library may be
complex: it can have a central density cusp, a stellar disk, a central black hole or an extended
dark halo. Applications of our code to the flattened systems M32 and NGC 4342 were presented
in chapter 4 and 5 of this thesis.

We have also devised a new semi-analytic method for constructing simpler dynamical mod-
els, for which the DF has the special form DF= f (E; Lz) or DF= f (E). These DFs are obtained by
using NNLS with analytic building blocks for which the VPs are obtained by one-dimensional
quadratures. This technique is general and does not require the density to be expressed analyti-
cally as a function of the potential, but can be used with any complex mass model. Previous
techniques assuming DF = f (E; Lz) that are also free of this condition include those of Hunter
& Qian (1993), Dehnen & Gerhard (1994), Kuijken (1995), Magorrian (1995) and M96b.

We have tested our new method by having it reproduce the properties of f (E; Lz) models
for which the DF and projected properties can be calculated with independent algorithms. This
allowed us to test all aspects of the superposition method, including the sampling of integral
space, orbit calculation, discreteness effects of the spatial grids, projection into the data cubes,
seeing convolution, and the NNLS algorithm. Tests with only two-intergal components repro-
duced the DF with a mass-weighted RMS accuracy of �< 5%, and the meridional plane velocity
moments to better than 2 km s�1. Tests with a regular orbit library indicated accuracies in the
projected quantities of � 2 km s�1 in V and �, and 0.01 in the GH-moments. All the tests that
we have done indicate that the accuracy of our method is adequate for the interpretation of
kinematical data obtained with realistic setups.

Our technique can be extended to triaxiality. Several parts of the method will be unaltered
for this geometry: the use of projected quantities, e.g., VP(x0; y0; vlos), the fitting procedure, the
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FIGURE 3.11— Examples of orbits at the energy with Rc = 0:2500, in the test model of Section 3.3.1 for the case with
a 3� 106 M� BH. The axes for each orbit are in units of Rc. Each line corresponds to a different value of j�j and each
column to a different value of the third integral. The ratio of the R- and z-frequencies for the parent orbit is indicated
for those orbits that are not parented by the thin tube.

seeing convolution, etc. However, the orbital structure is much richer than in the axisymmetric
case. New orbit families appear (e.g., box orbits) as well as numerous chaotic regions associ-
ated with resonances. During the numerical integration of a trajectory in such a mass model, all
six phase-space coordinates need to be computed, since there is no azimuthal symmetry. Con-
sequently, the computing overhead is significantly higher for triaxial geometries. Work along
these lines is in progress.
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FIGURE 3.12— Similar as Figure 3.11, but now for the same model without a central BH.
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3.A Construction of f (E; Lz)- and f (E)-components

3.A.1 Normalization

To determine the normalization coefficients C[E0;Lz;0] and C[E0] in the definitions of the two-
integral and isotropic components (eqs. [3.10, 3.11]), we seek expressions for the total mass of a
single component. The phase-space volume in cylindrical coordinates is d3~x d3~v= R2 dR d�dz
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dṘ d�̇ dż. We use

Ṙ2 = 2[E�Φ(R; z)]� L2
z

R2
� ż2; �̇ = Lz=R2; (3.20)

to switch, at fixed (R; z), from the variables (Ṙ; ż) to (E; Lz). We then find for the total mass of a
two-integral component:

m[E0;Lz;0] � Z
d3~x d3~v f �[E0;Lz;0] = Z

R2dR
Z

d�Z
dz

Z
dE

Ṙ

Z
dLz

R2

Z
dż f �[E0;Lz;0]: (3.21)

Upon substitution of f �[E0;Lz;0] from equation (3.10), the integration over �, E and Lz becomes

trivial, and we obtain

m[E0;Lz;0] = 4�C[E0;Lz;0]

ZZ
dR dz

Z n
2 [E0 �Φ(R; z)]� L2

z;0
R2

� ż2
o�1=2

dż: (3.22)

The integral over dż extends over the region jżj � żmax, where żmax is defined as the root of the
expression in the square root. Therefore,

m[E0;Lz;0] = 8�C[E0;Lz;0]

ZZ
dR dz

Z żmax

0

dżp
ż2

max � ż2
= 4�2C[E0;Lz;0]

ZZ
dR dz; (3.23)

where the remaining double integral is over the region for which E0�Φ(R; z)� (L2
z;0=2R2)� 0.

This is exactly the region Φeff;0(R; z) � E0 bounded by the ZVC at the given (E0; Lz;0), where
Φeff;0 is the effective gravitational potential at the given Lz;0. To obtain m[E0;Lz;0] = 1, we choose

C[E0;Lz;0] = h4�2
Z

Φeff;0(R;z)�E0

Z
dR dz

i�1 = h2�2
I

ZVC[E0;Lz;0]

(R dz� z dR)
i�1; (3.24)

where the second equality was obtained with a variant of Stokes’ theorem.
Following similar arguments, we obtain for the mass of an isotropic component:

m[E0] � Z
d3~x d3~v f �[E0] (3.25)= 8�C[E0]

ZZ
dR dz

Z
dLz

Z żmax

0

dżp
ż2

max� ż2
= 4�2C[E0]

Z
Φeff(R;z)�E0

ZZ
dR dz dLz;

where the effective gravitational potential Φeff(R; z) is a function of Lz, at fixed (R; z). Evaluation
of the integral over dLz yields

m[E0] = 8
p

2 �2C[E0]

Z
Φ(R;z)�E0

Z
R
p

E0 �Φ(R; z) dR dz: (3.26)

To obtain m[E0] = 1, we choose

C[E0] = h8p2 �2
Z

Φ(R;z)�E0

Z
R
p

E0�Φ(R; z) dR dz
i�1: (3.27)

For the special case of a spherical potential, Φ = Φ(r), we have

m[E0] = 16
p

2 �2C[E0]

Z
Φ(r)�E0

r2
p

E0�Φ(r) dr; (3.28)

which can be recognized as the ‘density-of-states’ function for an isotropic spherical system
(BT). Calculations for spherical components with DFs proportional to �(E� E0) �(L� L0) were
presented in Appendix A of chapter 2.
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3.A.2 Velocity profiles

We derive here the Jacobian J for the transformation from (vx0 ; vy0) to (E; Lz), which enters into
the expressions for the VPs of two-integral and isotropic components (eqs. [3.12,3.14]). The
energy is

E = 1
2 (v2

x0 + v2
y0 + v2

los)+Φ(x0; y0; z0): (3.29)

For inclination angle i,

x =�y0 cos i+ z0 sin i; z = y0 sin i+ z0 cos i; (3.30)

and the angular momentum is therefore

Lz = xvy � yvx = vx0(�y0 cos i+ z0 sin i)+ vy0(x0 cos i)� vlos(x0 sin i): (3.31)

This yields for the Jacobian

J = ���x0vx0 cos i+ y0vy0 cos i� z0vy0 sin i
����1; (3.32)

in which vx0 and vy0 are functions of E and Lz determined by:

vx0 = Lz � vy0x0 cos i+ vlosx0 sin i�y0 cos i+ z0 sin i
; v2

y0 = 2(E�Φ)� v2
x0 � v2

los: (3.33)

Substitution of vx0 in the expression for v2
y0 yields a quadratic equation for vy0 :

av2
y0 + bvy0 + c = 0; (3.34)

where

a = (�y0 cos i+ z0 sin i)2 + (x0 cos i)2;
b = �2(Lz + vlosx0 sin i) x0 cos i;
c = v2

los(�y0 cos i+ z0 sin i)2 + (Lz+ vlosx0 sin i)2 � 2(E�Φ)(�y0 cos i+ z0 sin i)2: (3.35)

Therefore,

vy0 = 2(Lz + vlosx0 sin i) x0 cos i�p∆
2[(�y0 cos i+ z0 sin i)2 + (x0 cos i)2]

; (3.36)

with ∆ � b2 � 4ac. Equations (3.32), (3.33) and (3.36) define the Jacobian J.

3.B Relation Between Orbital Weights and the DF

3.B.1 dM =dE dLz for an f (E; Lz) model

For a two-integral model there is a simple relation between the differential mass density dM =
dE dLz and the DF f (E; Lz). To derive this relation (see also Vandervoort 1984) we write the
trivial identity

f (E; Lz) = ZZ
f (E0; Lz;0) ( f �[E0;Lz;0]=C[E0;Lz;0]) dE0 dLz;0; (3.37)

where f �[E0;Lz;0] and C[E0;Lz;0] are as defined in equation (3.10). The total mass of the system is

M � Z
d3~x d3~v f (E; Lz) = ZZ

f (E0; Lz;0) (m[E0;Lz;0]=C[E0;Lz;0]) dE0 dLz;0; (3.38)
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where the second identity follows upon substitution of equation (3.37), exchange of the inte-
gration order, and use of the definition of m[E0;Lz;0] from equation (3.21). Substitution of equa-
tions (3.23) and (3.24), relabeling of the integration variables from (E0; Lz;0) to (E; Lz), and dif-
ferentiation then yields

dM = dE dLz = f (E; Lz) � h
2�2

I
ZVC[E;Lz]

(R dz� z dR)
i: (3.39)

The mass weight 
 j for a cell in integral space is
 j = Z
cell j

Z
dM

dE dLz
dE dLz: (3.40)

3.B.2 Scale-free Density in a Kepler Potential

We summarize here the asymptotic case of a scale-free axisymmetric density in a spherical Ke-
pler potential, which was discussed in detail by de Bruijne, van der Marel & de Zeeuw (1996).
We adopt the same units as in that paper. In those units, �? = s�� and Ψ = 1=r, where s is
defined as in eq. (3.1) by s2 = R2 + (z=q)2, with q the axial ratio. The associated eccentricity is
e =p1� q2. It is convenient to work with the integrals of motion

E =�E; �2 � L2
z=L2

max(E ); �2 � L2=L2
max(E ); (3.41)

where E is the binding energy, �2 2 [0; 1] and �2 2 [�2; 1]. The unique (even) two-integral DF is

DF(E ; �2) = C0 g(E ) j(e2�2); (3.42)

where

C0 = q�
2� B (�� 1

2 ; 3
2 )
; g(E ) = E �� 3

2 ; j(e2�2) = 3F2( �2 ; �+1
2 ; �+2

2 ; 1
2 ; 2��1

2 ; e2�2): (3.43)

The special functions B and 3F2 are the beta-function and a generalized hypergeometric func-
tion, respectively. Upon substitution of � = �� this yields the Rc ! 0 limit of our test model
(Section 3.3.1); upon substitution of � =��� (�
)� (��), it yields the Rc !1 limit.

We wish to calculate the mass weight 
 j contained in a cell number j of integral space (see
eq. [3.8]). According to equations (35) and (37) of de Bruijne et al. , this is given by:
 j = Z Z

cell j

Z
dE d�2 d�2 w(E ; �2; �2) DF(E ; �2); w(E ; �2; �2) = �3

4
E
�5=2 (�2)�1=2 (�2)�1=2:

(3.44)
In the Kepler potential the binding energy is related to the circular radius according to E =
1=(2Rc). The ZVC at a given (Rc; �2) is therefore defined by

1 = 2Rc

r
� (

Rc�
R

)2: (3.45)

A particle on the ZVC has vr = v� = 0, L2 = r2v2� and L2
z = R2v2�. Therefore, we have �2 =

(r�=R)2. Combined with the expression for the ZVC this yields�2 = h 2� (Rzvc=Rc)�2+ (Rzvc=Rc)2

i2; (3.46)
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which is a one-to-one relation if (Rzvc=Rc) is chosen between � and 1+p1� �2. Substitution
of the DF from equation (3.42) into equation (3.44), and transformation to the variables log Rc,� 2 [0; 1] and (Rzvc=Rc) 2 [�; 1+p1� �2] yields

dM

d(log Rc) d�d(Rzvc=Rc)
= 2 C0 �3 (

Rc

2
)3�� � j(e2�2)

n �2 � (Rzvc=Rc)
2

[�2 + (Rzvc=Rc)2]2

o: (3.47)

Hence, the normalized distribution of mass over (�; Rzvc=Rc) at fixed energy, which we will
denote as h(�; Rzvc=Rc), is independent of energy. In particular:

h(�; Rzvc=Rc) = 2� j(e2�2)
n �2 � (Rzvc=Rc)

2

[�2+ (Rzvc=Rc)2]2

o.Z 1

0
d�2 j(e2�2)

Z 1+p1��2� d(Rzvc=Rc)
n �2 � (Rzvc=Rc)

2

[�2 + (Rzvc=Rc)2]2

o: (3.48)



Chapter 4

Improved evidence for a black hole in M32

van der Marel, R. P., Cretton, N., de Zeeuw, P. T., Rix, H.–W.
1998, ApJ, 493, 613

Axisymmetric dynamical models are constructed for the E3 galaxy M32 to interpret high spatial res-
olution stellar kinematical data obtained with the Hubble Space Telescope (HST). Models are studied
with two-integral, f (E; Lz), phase-space distribution functions, and with fully general three-integral
distribution functions. The latter are built using an extension of Schwarzschild’s approach: individ-
ual orbits in the axisymmetric potential are calculated numerically, and populated using non-negative
least-squares fitting so as to reproduce all available kinematical data, including line-of-sight veloc-
ity profile shapes. The details of this method are described in companion papers by Rix et al. and
Cretton et al. (chapter 2 and 3 of this thesis).

Models are constructed for inclinations i = 90� (edge-on) and i = 55�. No model without a nuclear
dark object can fit the combined ground-based and HST data, independent of the dynamical structure
of M32. Models with a nuclear dark object of mass MBH = 3:4� 106 M� (with 1� and 3� error bars of
0:7� 106 M� and 1:6� 106 M�, respectively) do provide an excellent fit. The inclined models provide
the best fit, but the inferred MBH does not depend sensitively on the assumed inclination. The models
that best fit the data are not two-integral models, but like two-integral models they are azimuthally
anisotropic. Two-integral models therefore provide useful low-order approximations to the dynamical
structure of M32. We use them to show that an extended dark object can fit the data only if its half-mass
radius is rh <� 0:0800 (= 0:26 pc), implying a central dark matter density exceeding 1� 108 M� pc�3.

The inferred MBH is consistent with that suggested previously by ground-based kinematical data.
However, radially anisotropic axisymmetric constant mass-to-light ratio models are now ruled out
for the first time, and the limit on the dark matter density implied by the HST data is now stringent
enough to rule out most plausible alternatives to a massive black hole.

The dynamically inferred MBH is identical to that suggested by existing models for HST photometry
of M32 that assume adiabatic growth (over a time scale exceeding 106 yr) of a black hole into a pre-
existing core. The low activity of the nucleus of M32 implies either that only a very small fraction of
the gas that is shed by evolving stars is accreted onto the black hole, or alternatively, that accretion
proceeds at very low efficiency, e.g., in an advection-dominated mode.

IT is generally believed that active galaxies and quasars are powered by the presence of mas-
sive black holes (BHs) in their nuclei, and that such BHs are present in many, possibly all,

quiescent galaxies as well (see Kormendy & Richstone 1995, Lynden-Bell 1996 and Rees 1996
for reviews of this paradigm and its history). Evidence for this can be derived from studies of
the dynamics of stars and gas in the nuclei of individual galaxies. The high spatial resolution
data that can now be obtained with the Hubble Space Telescope (HST) allows the existing ev-
idence to be strengthened considerably. The present paper is part of a new HST study of the
quiescent galaxy M32, in which the presence of a BH has long been suspected based on the steep
central rotation velocity gradient and nuclear peak in the velocity dispersion seen in ground-
based data (e.g., Tonry 1987; van der Marel et al. 1994a; Bender, Kormendy & Dehnen 1996). The
main results of our project were summarized, and discussed in the context of other recent work,
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in van der Marel et al. (1997a). The acquisition and reduction of the stellar kinematical HST data
were described in van der Marel, de Zeeuw & Rix (1997b; hereafter Paper I). Here we present
new dynamical models that we have used to interpret the combined HST and ground-based
data.

Two types of self-consistent1 dynamical models have been constructed previously to in-
terpret the ground-based data for M32. Dressler & Richstone (1988) and Richstone, Bower &
Dressler (1990) used a method based on Schwarzschild’s (1979) technique, in which individual
orbits are calculated and superposed, to provide a self-consistent model that fits a given set of
data. These ‘maximum entropy’ (Richstone & Tremaine 1988) models could fit the (then avail-
able) data only by invoking the presence of a central dark mass of (0:7–8)� 106M�. The models
are general in the sense that they make no assumptions about the dynamical structure of the
galaxy. However, a drawback was that only spherical geometry was considered. Even though
the models can be made to rotate, it remains unclear what systematic errors are introduced
when they are applied to a flattened (E3) galaxy like M32. An alternative approach has been to
construct axisymmetric models with phase-space distribution functions (DFs) that depend only
on the two classical integrals of motion, f = f (E; Lz), where E is the binding energy and Lz is
the angular momentum component along the symmetry axis, both per unit mass. These models
properly take flattening and rotation into account. To fit the M32 data, they require the presence
of a central dark mass between 1:8� 106M� (van der Marel et al. 1994b; Qian et al. 1995, here-
after Q95; Dehnen 1995) and 3� 106M� (Bender, Kormendy & Dehnen 1996). The disadvantage
of these models is that they have a special dynamical structure. The velocity dispersions in the
meridional plane are isotropic, �r = �� , which might not be the case in M32. However, the
models do fit the observed line-of-sight velocity profile (VP) shapes without invoking freely
adjustable parameters, which provides some reason to believe that the M32 DF may not be too
different from the form f (E; Lz).

The previous work on M32 has shown that models with a BH can fit the ground-based data,
but the modeling has not been general enough to demonstrate that a BH is required.2 In fact,
the spatial resolution of the ground-based data might have been insufficient for this to be the
case (see Appendix 4.A for a discussion of this issue). It has certainly not been sufficient to rule
out a cluster of dark objects (as opposed to a central BH) on the basis of theoretical arguments;
Goodman & Lee (1989) showed that this requires a resolution of <� 0:100. Our new HST data of
the nuclear region of M32 were obtained with the HST Faint Object Spectrograph (FOS) through
square apertures of 0:06800 and 0:19100 , respectively, yielding the highest spatial resolution stellar
kinematical data for M32 obtained to date. The results (see, e.g., Figure 4.2 below) show a
steeper rotation curve and higher central velocity dispersion than the best ground-based M32
data. The primary goals of our project are to determine whether these new HST data rigorously
rule out models without any dark mass, and to what extent they constrain the mass and size of
the dark object in M32.

To obtain constraints on the presence of a dark object that are least dependent on a priori
assumptions about the DF, we need to compare the HST data not only to the predictions of
axisymmetric f (E; Lz) models, but also to the predictions of models with a fully general dy-
namical structure. Orbit superposition techniques provide the most straightforward approach

1We use the term ‘self-consistent’ for models in which the luminous mass density is in equilibrium in the com-
bined gravitational potential due to the luminous mass density and some (known) dark matter density. This defini-
tion is broader than the traditional one, which excludes dark matter.

2Dressler & Richstone (1988) and Richstone, Bower & Dressler (1990) argued that their data could not be fit by
any spherical model without a BH, but we show in Figure 4.15 below that their data can be fit by an axisymmetric
model without a BH.
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to construct such models. However, orbit superposition is more difficult to implement for the
axisymmetric case than for the spherical case: the orbits are not planar and typically possess
an additional integral of motion, so that the orbit library must sample three rather than two
integrals of motion. Furthermore, a larger parameter space must be explored because of the
unknown inclination angle. This implies that larger amounts of CPU time and computer mem-
ory are required. However, other than that, there are no reasons why such models would be
infeasible. Motivated by the increased speed and memory capacity of computers, we therefore
developed a technique to construct fully general axisymmetric orbit superposition models, that
fit any given number of observed photometric and kinematic constraints. Independent software
implementations were written by H.-W.R, N.C. and R.v.d.M. Our technique may be viewed as
the axisymmetric generalization of the spherical modeling used by Richstone and collabora-
tors, with the important additional feature that we calculate VP shapes and include an arbitrary
number of Gauss-Hermite moments in the fit. We take into account the error on each observa-
tional constraint to obtain an objective �2 measure for the quality-of-fit. Our basic algorithm is
described in Rix et al. (1997; chapter 2) and summarized in de Zeeuw (1997). Chapter 2 provides
an application to the spherical geometry; Cretton et al. (1999; chapter 3) present the extension
to the axisymmetric case. Here we summarize the main steps of the axisymmetric algorithm
briefly, and focus on the application to M32. The resulting models are the most general yet
constructed for M32.

The paper is organized as follows. In Section 4.1 we discuss our parametrizations for the
stellar mass density and for the potential of the dark object. In Section 4.2 we describe the con-
struction of models with f (E; Lz) DFs, and in Section 4.3 we compare the predictions of these
models, both with and without BHs, to the kinematical data. In Section 4.4 we outline the orbit-
superposition technique for constructing models with a fully general dynamical structure, and
in Section 4.5 we compare the predictions of these models to the data. We construct models with
an extended dark object in Section 4.6. We summarize and discuss our main conclusions in Sec-
tion 4.7. Readers interested primarily in the results of our models may wish to skip Sections 4.1,
4.2 and 4.4.

4.1 Mass density and potential

We adopt a parametrized form for the axisymmetric mass density of M32:�(R; z)= �0 (m=b)� [1+ (m=b)2]� [1+ (m=c)2]
 ; m2 � R2+ (z=q)2: (4.1)

The mass density � is related to the luminosity density j according to � = ϒ j, where ϒ is the av-
erage mass-to-light ratio of the stellar population (hereafter given in solar V-band units). Both
ϒ and the intrinsic axial ratio q are assumed to be constant (as a function of radius). The pro-
jected axial ratio qp is determined by the inclination i according to q2

p = cos2 i + q2 sin2 i. The
parameters ϒ and i can be freely specified; all other parameters are determined by fitting to the
available M32 surface photometry.

The highest spatial resolution surface photometry available for M32 is that presented by
Lauer et al. (1992), based on pre-COSTAR HST/WFPC images. Their measurements extend
to � 400 from the nucleus. At larger radii ground-based data are available from Kent (1987)
and Peletier (1993). Figure 4.1 shows the major axis surface brightness measurements from
these sources. The solid curve shows the surface brightness profile predicted by our model,
for � = �1:435, � = �0:423, 
 = �1:298, b = 0:5500, c = 102:000 , qp = 0:73, �0 = j0ϒM�=L�;V,
j0 = 0:463� 105 (qp=q) L�;V pc�3, and an assumed distance of 0:7 Mpc. The factor [1+ (m=c)2]

in equation (4.1) ensures that the model has finite mass, and that it provides an adequate fit
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FIGURE 4.1— Data points are observations of the M32 major axis V-band surface brightness from Lauer et al. (1992),
Peletier (1993) and Kent (1987). The R-band data from Kent and Peletier were transformed to the V-band by assum-
ing a constant V�R color. The differences between the data sets at large radii are due to uncertainties in the sky
subtraction. Measurements are not plotted at radii where the PSF introduces large uncertainties (� 0:100 for the
Lauer et al. HST data,� 200 for the ground-based data). The solid curve is the brightness profile for the axisymmetric
luminous density model used in the present paper. The dashed curve is the profile for the model used by van der
Marel et al. (1994b) and Q95.

to the observed surface brightness profile out to >� 10000. Apart from this factor, the model is
identical to that used by van der Marel et al. (1994b) and Q95 (dashed curve in Figure 4.1).

Our model for the mass density is somewhat less general than that used by Dehnen (1995),
who deprojected the surface photometry in an unparametrized manner. His approach avoids
possible biases resulting from the choice of an ad hoc parametrization (Merritt & Tremblay 1994;
Gebhardt et al. 1996). It also allows the axial ratio of M32 to vary with radius. The observed
axial ratio is very close to constant at qp = 0:73 in the central� 1000, but increases slowly to 0:86
at� 10000. Even though our model does not reproduce this modest variation, overall it provides
an excellent fit, and is fully adequate for a study of the nuclear dynamics. The uncertainties
in the interpretation of the kinematic data for the center of M32 are due almost entirely to our
ignorance of the dynamical structure of M32. The uncertainties introduced by errors in the
brightness profile or by the non-uniqueness of the deprojection are relatively minor (van den
Bosch 1997). The effect of possible triaxiality is more difficult to assess, but we will argue in
Section 4.7.4 that triaxiality is unlikely to modify any of the major conclusions of our paper.

The gravitational potential is assumed to be Ψ = Ψlum +Ψdark, where Ψlum is the potential
generated by the luminous matter with mass density (4.1), and Ψdark allows for the possibility
of a massive dark object in the nucleus. We assume the latter to be

Ψdark = GMBH(r2 + �2)�1=2; (4.2)

which is the potential generated by a cluster with a Plummer model mass density (e.g., Binney
& Tremaine 1987). For � = 0 one obtains the case of a dark nuclear point mass, i.e., a nuclear
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FIGURE 4.2— Data points show the rotation velocities V and velocity dispersions � derived from the HST/FOS
data of Paper I, and from the ground based WHT and CFHT data of van der Marel et al. (1994a) and Bender, Kor-
mendy & Dehnen (1996). Errors for the ground-based data are � 1 km s�1 for the WHT data and � 6 km s�1 for the
CFHT data, but are not plotted for clarity. The abscissa r is the major axis distance. Curves show the predictions for
the HST setup of edge-on f (E; Lz) models with no nuclear dark mass (dashed curves) and with nuclear point masses
(BHs) of 1, 2, 3, 4, 5 and 6� 106 M� (solid curves). Models with MBH � (3� 1)� 106 M� best reproduce the trend in
the observed dispersions.

BH. We do not include the potential of a possible dark halo around M32. There are no (strong)
observational constraints on the possible presence and characteristics of such a dark halo, and
even if present, it will not affect the stellar kinematics near the nucleus of M32.

4.2 Construction of two-integral models

The regular orbits in general axisymmetric potentials are characterized by three integrals of
motion, the binding energy E = Ψ� 1

2 v2, the component of the angular momentum around
the symmetry axis Lz = Rv�, and a non-classical, or effective, third integral I3 (Ollongren 1962;
Richstone 1982; Binney & Tremaine 1987). In any given axisymmetric potential there is an in-
finity of DFs f (E; Lz; I3) that generate a given axisymmetric mass density �(R; z). Such models
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are difficult to construct, primarily because the third integral cannot generally be expressed ex-
plicitly in terms of the phase-space coordinates. However, for any mass density �(R; z) there is
exactly one DF that is even in Lz, and does not depend on I3. This unique even ‘two-integral’
DF, fe(E; Lz), provides a useful low-order approximation to any axisymmetric model, and has
the convenient property that many physical quantities, including the DF itself, can be calculated
semi-analytically. We study models of this type for M32 because they have successfully repro-
duced ground-based M32 data, and because they provide a useful guide for the interpretation
of more general three-integral models, which are discussed in Sections 4.4 and 4.5.

To calculate the fe(E; Lz) DFs for our models we have used a combination of the techniques
described in Q95 and Dehnen (1995), even though either technique by itself could have been
used to get the same result (in fact, yet another technique to address this problem is described
in chapter 3 of this thesis). Initially, four radial regimes are considered: m� b; m� b; m� c; and
m � c, with m and b � c as defined in equation (4.1). In these regimes the mass density is ap-
proximately: � / m�; � / (m=b)� [1+ (m=b)2]� ; � / (m=b)�+2�[1+ (m=c)2]
 ; and � / m�+2�+2
,
respectively. For each of these mass densities fe(E; Lz) can be calculated with the technique
and software of Q95. The DFs for the four regimes are then smoothly patched together in en-
ergy, to yield an approximation to the full DF. This approximation is then used as the starting
point for Lucy-Richardson iteration as described in Dehnen (1995). This yields the DF fe(E; Lz),
reproducing the model mass density to <� 0:3 per cent RMS.

The total DF is the sum of the part fe that is even in Lz, and the part fo that is odd in Lz. In
principle, fo is determined completely by the mean streaming velocities hv�i(R; z), but these are
not determined well enough by the data to make an inversion practicable. Instead, therefore,
fo can be freely specified so as to best fit the data, with the only constraint that the total DF
should be positive definite. None of the main conclusions of our paper depend sensitively
on the particular parametrization used for fo, so we restrict ourselves here to a simple choice
(Section 4.3.1). Once the complete DF is known, the projected line-of-sight VPs can be calculated
for any particular observational setup as in Q95. From the VPs, predictions can be calculated
for the observable kinematical quantities.

4.3 Predictions of two-integral models

4.3.1 Data-model comparison

Figure 4.2 shows the HST/FOS data presented in Paper I, obtained with the apertures ‘0.1-PAIR’
(0:06800 square) and ‘0.25-PAIR’ (0:19100 square). The figure also shows the highest available spa-
tial resolution ground-based data, obtained by van der Marel et al. (1994a) with the William
Herschel Telescope (WHT), and by Bender, Kormendy & Dehnen (1996) with the Canada-
France Hawaii Telescope (CFHT). The spatial resolution for these ground-based observations
is roughly 0:900 and 0:500 FWHM, respectively. The predictions of f (E; Lz) models for the WHT
and CFHT data have already been discussed in detail by previous authors, and we therefore
focus here on a comparison of f (E; Lz) models to the new HST data.

The curves in Figure 4.2 are the predictions of edge-on f (E; Lz) models with dark nuclear
point masses (i.e., BHs). These models have an intrinsic axial ratio q = 0:73. The dark mass only
influences the kinematical predictions in the central few arcsec, and the mass-to-light ratio ϒ
was therefore chosen to fit the normalization of the kinematical data at larger radii. A good fit
to the WHT data between� 500 and� 1200 is obtained with ϒ = 2:51. Predictions were calculated
for each individual observation, taking into account the aperture position, aperture size and PSF
for the HST data as given in Paper I. Connecting curves in the figure were drawn to guide the
eye. It proved sufficient to study only models with a very simple odd part fo, namely those that
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FIGURE 4.3— The relative RMS velocity dispersion residual ��;RMS for edge-on f (E; Lz) models with nuclear point
masses, as function of MBH. Results are shown for the HST dispersion measurements of Paper I, and for the ground-
based WHT and CFHT measurements. The ��;RMS for the best fit to the WHT data is larger than for the CFHT data,
because the WHT data have much smaller errors (such that differences between the predictions and the data are
statistically more significant). The symbols in the box mark the position of the best-fitting MBH for each data set and
its formal 1� error bar (the latter is determined not only by the curvature at the ��;RMS minimum, but also by the
number of data points, which is different for each data set). Models with MBH � 3� 106 M� best fit the HST and the
CFHT data. The WHT data are not well fitted by this MBH. The fact that data of different spatial resolution cannot
be fit with the same MBH implies that M32 does not have a DF of the form f = f (E; Lz).

produce a total DF in which at every (E; jLzj) a fraction F of the stars has Lz > 0, and a fraction
(1� F) has Lz < 0. For each MBH, the fraction F� 1 of stars with Lz > 0 in the model was chosen
to optimize the �2 of the fit to the rotation curve. The displayed models with a BH fit the rotation
curve well, more or less independent of MBH; models with higher MBH require smaller F. The
models differ primarily in their predictions for the velocity dispersions. The observed trend of
increasing velocity dispersion towards the nucleus is successfully reproduced by models with
a nuclear point mass of MBH � (3� 1)� 106 M�. The model without a BH predicts a roughly
constant velocity dispersion with radius, and is strongly ruled out. In fact, this model also fails
to fit the observed rotation velocity gradient in the central arcsec. The displayed model for the
no-BH case is maximally rotating (F= 1), and it is thus not possible to improve this by choosing
a more general form for the odd part of the DF.

For a quantitative analysis of the best-fitting MBH, we define a �2 statistic that measures the
quality of the model fit to the observed HST velocity dispersions:�2� � N

∑
i=1

��model � �obs

∆�obs

�2 ; ��;RMS � [�2�=N]1=2: (4.3)

Figure 4.3 shows the relative RMS residual ��;RMS as function of MBH. The best fit to the HST
dispersions is obtained for MBH = (2:7� 0:3)� 106 M�. The quoted error is a formal 1� error
based on the assumption of Gaussian statistics (probably an underestimate, as there is some hint
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FIGURE 4.4— Horizontally hatched regions show the average velocity dispersion and its 1� error for those HST,
CFHT and WHT observations with the aperture center within 0:100 from the M32 nucleus. Curves show the pre-
dictions for edge-on f (E; Lz) models with nuclear point masses, as function of MBH. Models with no nuclear dark
mass are ruled out under the f (E; Lz) hypothesis. Models with nuclear point masses reproduce the increase in the
observed nuclear velocity dispersion with increasing spatial resolution. The horizontal bars in the boxed region
indicate for each data set the range of MBH values that predict a nuclear dispersion within the observed hatched
region. As in Figure 4.3, the data of different spatial resolution cannot be fit with one single value of MBH.

for systematic errors in the data in addition to random errors). An alternative way of estimating
MBH is to model the average of the four data points within 0:100 from the center: �r�0:100 =
(126� 10) km s�1, where the 1� error is based on the scatter between the data points. Figure 4.4
shows the observed �r�0:100 as a hatched region; a solid curve shows the predicted value as a
function of MBH. The predictions fall in the observed range for MBH = (3:4� 0:9)� 106 M�.

The inclination of M32 cannot be derived from the observed photometry and is therefore a
free parameter in the modeling. However, the predictions of f (E; Lz) models are rather insensi-
tive to the assumed inclination (van der Marel et al. 1994b). This was verified by also calculating
the predictions of inclined models with i = 55�, which have an intrinsic axial ratio q = 0:55. A
mass-to-light ratio ϒ = 2:55 was adopted, so that at large radii one obtains the same RMS pro-
jected velocity on the intermediate axis (between the major and minor axes) as for an edge-on
model. On the major axis the i = 55� model then predicts a slightly higher RMS velocity than
the edge-on model, resulting in a � 10 per cent smaller best-fitting MBH. Apart from this, the
conclusions from the inclined models were found to be identical to those for the edge-on models
(cf. Figure 4.13 below).

4.3.2 Is the M32 distribution function of the form f (E; Lz)?

The f (E; Lz) models that fit the HST data can only be correct if they also fit the ground-based
WHT and CFHT data. One may define similar �2 quantities as for the HST data, to deter-
mine the best-fitting MBH for either of these data sets. Figures 4.3 and 4.4 show the relative
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RMS residual ��;RMS of the fit to all the dispersion measurements, and the average dispersion�r�0:100 of the dispersion measurements centered with 0:100 from the nucleus. For the WHT
data, ��;RMS is minimized for MBH = (1:46� 0:03)� 106 M�, whereas for the CFHT data it is
minimized for MBH = (2:8� 0:2)� 106 M�. The central velocity dispersion measured with the
WHT is best fit with MBH = (1:94 � 0:05) � 106 M�, whereas for the CFHT data it is best fit
with MBH = (2:1� 0:2)� 106 M�. These results are roughly consistent with those of previous
authors. Van der Marel et al. (1994b), Q95 and Dehnen (1995) found MBH � (1:8� 0:3)� 106 M�
for the best fitting edge-on f (E; Lz) model to the ground-based WHT data, while Bender, Kor-
mendy & Dehnen obtained a best fit to their higher spatial resolution CFHT data with MBH �
(3:0� 0:5)� 106 M�. The latter value is somewhat higher than the one we find here, because
it was chosen only to provide a good fit to the CFHT rotation curve; it does not fit the CFHT
velocity dispersions very well.

These results indicate that, under the assumption of an f (E; Lz) DF, the different observa-
tions cannot all be fit simultaneously with the same MBH, even after accounting for the different
observational setups. The lowest spatial resolution WHT data require a significantly lower MBH

than the highest spatial resolution HST data. This implies that M32 has a DF that is not of the
form f = f (E; Lz).

4.4 Construction of three-integral models

To construct more general three-integral models for M32, we extended Schwarzschild’s orbit
superposition algorithm. Its basic structure is to calculate an orbit library that samples integral
space in some complete and uniform way, to store the time-averaged intrinsic and projected
properties of the orbits, and to search for the weighted superposition of orbits that best fits the
observed kinematics, while reproducing the mass density �(R; z) for self-consistency. Here we
summarize the main steps, with emphasis on those aspects that are unique to the M32 applica-
tion. Complete descriptions of the technique are given in chapter 2 and 3.

We sample integral space with an (Rc; �;w) grid. The quantity Rc(E) is the radius of the
circular orbit in the equatorial plane with energy E. Its angular momentum, Lmax(E), is the
maximum angular momentum at the given energy. We define �(E; Lz) � Lz=Lmax(E). For fixed
(Rc; �), the position of a star in the meridional (R; z) plane is restricted to the region bounded
by the ‘zero-velocity-curve’ (ZVC), defined by the equation E = Ψeff, where Ψeff = Ψ� 1

2 L2
z=R2

is the ‘effective gravitational potential’ (Binney & Tremaine 1987). We parametrize the third
integral at each (Rc; �) using an angle w, which fixes the position at which an orbit touches the
ZVC (cf. Figure 4.5).

The quantity Rc was sampled using 20 logarithmically spaced values between Rc;min =
6:12� 10�4 arcsec, and Rc;max = 7:55� 103 arcsec. This range of radii contains all but a frac-
tion 10�4 of the stellar mass of M32. The quantity � was sampled using an ‘open’ grid (in the
same sense that numerical quadrature formulae can be open or closed, e.g., Press et al. 1992) of
N� = 14 values, spaced linearly between�1 and 1, i.e., �i =�1+ (2i� 1)=N� , for i = 1; : : : ;N� .
The quantity w was sampled using an ‘open’ grid of 7 values, spaced linearly between 0 and
wth. Here wth is the angle w for the ‘thin tube’ orbit at the given (E; Lz) (see Figure 4.5). The
special values � = 0 and � = �1 (meridional plane and circular orbits) and the special values
w = 0 and w = wth (equatorial plane and thin tube orbits) are presumed to be represented by
their closest neighbors on the grid, but are not included explicitly.

An orbit was integrated for each (Rc; �;w) combination, starting with vR = vz = 0 from the
ZVC. The integration time was 200 times the period of the circular orbit at the same energy.
This is sufficient to properly sample the phase-space trajectory for the large majority of orbits,
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FIGURE 4.5— Example of the meridional plane at a fixed energy E. The axes are in units of Rc(E), the radius of
the circular orbit at the given energy. The library in our orbit-superposition models uses an open grid of 7 values
of j�j 2 [0;1], where � � Lz=Lmax(E); orbits for Lz > 0 and Lz < 0 are identical, except for a reversal of the three-
dimensional velocity vector at each phase-point. The oval curves are the zero-velocity curves (ZVCs) for each j�j.
Positions on the ZVC can be parametrized using the angle w. Because every orbit with Lz 6= 0 touches the ZVC
(Ollongren 1962), all orbits at a given (E; Lz) can be sampled by starting stars with vR = vz = 0 from the ZVC (but
v� 6= 0 for Lz 6= 0). The ‘thin tube’ orbit (heavy solid curve, for the case of the highlighted ZVC) is the only orbit
that touches the ZVC at only a single value of jwj, referred to as wth. All other orbits touch the ZVC at at least two
values of jwj, one smaller than wth and one larger than wth (see chapter 3 for examples of actual orbits). Orbits with
w 2 [��;0] follow trivially from those with w 2 [0; �] upon multiplication of (z; vz) by�1, at each phase-point along
the orbit. It is therefore sufficient to consider only orbits with w 2 [0;wth]. We sample this range using an open grid
of 7 values (indicated by the dots, for the case of the highlighted ZVC). The figure shows the meridional plane at
the energy for which Rc(E)= 0:2500, in the edge-on model with MBH = 3� 106 M� and ϒ = 2:51. The ZVCs at other
energies and in other models differ in the details, but are topologically similar.

although it exceeds the Hubble time only at radii >� 10000. The integrations yield the ‘orbital
phase-space density’ for each orbit, as described in chapter 3. These were binned onto: (i) an
(r; �) grid in the meridional plane; (ii) an (r0; �0) grid on the projected (x; y) plane of the sky;
and (iii) several Cartesian (x; y; v) cubes, with v the line-of-sight velocity. The first two grids
were chosen logarithmic in r, r0, with identical bins to those used for Rc, and linear in �, �0 2
[0; �2 ]. The (x; y; v) cubes were centered on (0; 0; 0), with 211� 211 square spatial cells, and 91
velocity bins of 15 km s�1. Spatial cell sizes were adopted of 0:02500, 0:0800 and 0:500, respectively.
The (x; y; v) cubes were used to calculate, for each orbit, the predicted line-of-sight velocity
histograms for all positions and setups for which kinematical data are available, taking into
account the observational point-spread-functions (PSFs) and aperture positions, orientations
and sizes, as described in chapter 3.

Construction of a model consists of finding a weighted superposition of the orbits in the
library that reproduces two sets of constraints:� Self-consistency constraints. The model should reproduce the masses predicted by the

luminous density �(R; z) (Section 4.1), for each cell of the meridional (r; �) grid, for each
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cell of the projected (r0; �0) grid, and for each aperture on the sky for which there is data3.� Kinematical constraints. The model should reproduce the observed kinematics of the
galaxy, including VP shapes. We chose to express this as a set of linear constraints on
the Gauss-Hermite moments hi of the VPs (chapter 2).

Smoothness of the solutions in integral space may be enforced by adding extra regularization
constraints (see Section 4.5.3 below). The quality of the fit to the combined constraints can be
measured through a �2 quantity (chapter 2). The assessment of the fit to the kinematical con-
straints includes the observational errors. In principle, one would like to fit the self-consistency
constraints with machine precision. In practice this is unfeasible, because the projected mass
constraints are not independent from each other (aperture positions for different data sets partly
overlap) and from the meridional plane mass constraints. It was found that models with no
kinematical constraints could at best fit the masses with a fractional error of � 5� 10�3. Moti-
vated by this, fractional ‘errors’ of this size were assigned to all the masses in the self-consistency
constraints4. As described in chapter 2 and 4, we use the NNLS routine of Lawson & Hanson
(1974) to determine the combination of non-negative orbital occupancies (which need not be
unique) that minimizes the combined �2.

The model predictions have a finite numerical accuracy, due to, e.g., gridding and dis-
cretization. Tests show that the numerical errors in the predicted kinematics of our method are<� 2 km s�1 for the rotation velocities and velocity dispersions, and <� 0:01 in the Gauss-Hermite
moments (chapter 3). Numerical errors of this magnitude have only an insignificant effect on
the data-model comparison (see Appendix 4.A).

4.5 Predictions of three-integral models

4.5.1 Implementation

We have studied three-integral models with dark central point-masses, i.e., �= 0 in equation (4.2).
There are then three free model parameters: the inclination i, the mass-to-light ratio ϒ, and the
BH mass MBH. The parameter space must be explored through separate sets of orbit libraries5.
As for the two-integral models, we have studied only two, widely spaced, inclinations: i = 90�
and i = 55�. For each inclination we have sampled the physically interesting range of (ϒ ; MBH)
combinations. For each (ϒ ; MBH) combination we determined the orbital weights (and hence
the dynamical structure) that best fit the data, and the corresponding goodness-of-fit quantity�2(ϒ ; MBH). All available HST/FOS, CFHT and WHT data were included as kinematical con-
straints on the models. Older kinematical data for M32 were not included because of their lower
spatial resolution and/or poorer sky coverage. In total, each NNLS fit had 1960 orbits to fit 782
constraints: 366 self-consistency constraints, and 416 kinematical constraints (for 86 positions
on the projected plane of the galaxy). We focus primarily (Figures 4.6–4.8) on models without
additional constraints that enforce smoothness in integral-space.

3In theory, it is sufficient to fit only the meridional plane masses. Projected masses are then fit automatically. In
practice this is not exactly the case, because of discretization. Projected masses were therefore included as separate
constraints.

4In principle one would like to include the observational surface brightness errors in the analysis. Unfortunately,
this requires the exploration of a large set of three-dimensional mass densities (that all fit the surface photome-
try to within the errors), which is prohibitively time-consuming. However, the observational errors in the surface
brightness are small enough that they are not believed to influence the conclusions of our paper.

5Only one orbit library needs to be calculated for models with the same MBH=ϒ. The potentials of such models
are identical except for a normalization factor, and the orbits are therefore identical except for a velocity scaling.
Each (ϒ ;MBH) combination does require a separate NNLS fit to the constraints.
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FIGURE 4.6— Contour plots of the �2 that measures the quality of the fit to the combined HST, CHFT and WHT
data, for orbit-superposition models with i= 90� and i= 55�. The model parameters along the abscissa and ordinate
are the BH mass MBH and the (V-band) mass-to-light ratio ϒ , respectively. The dots indicate models that were
calculated, the contours were obtained through spline interpolation (the first three contours define the formal 68:3,
95:4 and (heavy contours) 99:73 per cent confidence regions; subsequent contours are characterized by a factor two
increase in ∆�2). The bottom right corner in each panel is a region for which no models were calculated. The labeled
positions define models that are discussed in detail in the text and in subsequent figures and in Table 4.1. Models C
and G provide the overall best fits.

This is a sufficient and conservative approach for addressing the primary question of our
paper: which models are ruled out by the M32 data? If the data cannot even be fit with an arbitrarily
unsmooth DF, they certainly cannot be fit with a smooth DF.

4.5.2 Data-model comparison

Figure 4.6 shows the main result: contour plots of �2(ϒ; MBH) for both inclinations that were
studied. The displayed �2 measures the quality of the fit to the kinematical constraints only;
the actual NNLS fits were done to both the kinematical and the self-consistency constraints,
but contour plots of the total �2 look similar. The overall minimum �2 values are obtained for:
ϒ = 2:1 and MBH = 3:4� 106 M� for i = 90�; and ϒ = 2:0 and MBH = 3:2� 106 M� for i = 55�.

Figure 4.7 compares the kinematical predictions of the best-fitting edge-on and i = 55� mod-
els to the data. Two problems with the data must be taken into account when assessing the
quality of the fit. First, the HST velocity dispersions show a scatter between some neighboring
points that is much larger than the formal errors, most likely due to some unknown systematic
effect. The models cannot be expected to reproduce this. Second, the CFHT rotation velocities
at radii >� 0:500 exceed the WHT measurements by an amount which cannot be attributed to
differences in spatial resolution, but must be due to some unknown systematic error in either
of the two data sets. The WHT data have the smallest error bars, and therefore receive most
weight in the NNLS fit. As a result, the models tend to underpredict the CFHT rotation curve.

These systematic problems with the data preclude the use of �2 as a meaningful statistic to
assess which models provide an acceptable fit: if the observations themselves are not mutually
consistent, then clearly no model can be statistically consistent with all of them. Although the
use of any statistical test is suspect in the presence of systematic errors, one may still assign
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confidence regions on the model parameters by using the relative likelihood statistic ∆�2 � �2 ��2
min. This statistic merely measures which parameter combinations provide an equally good

(or bad) fit as the one(s) that yield the minimum �2. If we assume that the observational errors
are normally distributed (which, as mentioned, is likely to be an oversimplification), then ∆�2

follows a �2 probability distribution with the number of degrees of freedom equal to the number
of model parameters (Press et al. 1992)6.

The best-fitting edge-on model in Figure 4.7 has �2 = 690:0 while the best-fitting i = 55�
model has �2 = 602:5, both for N = 416 degrees of freedom. The fact that �2 > N, even for
these optimum fits, is due primarily to the systematic errors in the data. To the eye, the models
appear to fit the data as well as could be hoped for. The �2 values do indicate that the i = 55�
model provides a significantly better fit than the edge-on model, implying that M32 is not seen
edge-on. However, the results presented here do not allow us to derive the actual inclination
of M32. That would require a detailed study of the entire range of possible inclinations, which
would be more computer-intensive. The important conclusion in the present context is that the
topology of the �2 contours in Figure 4.6 is virtually identical for both inclinations: the allowed
range for MBH is therefore uninfluenced by our ignorance of the true inclination of M32.

The ∆�2 statistic was used to assign confidence values to the contours in Figure 4.6. At the
68:3 per cent confidence level (1� for a Gaussian probability distribution), the allowed MBH fall
in the range (3:2–3:5)� 106 M� for i = 90�, and in the range (3:1–3:4)� 106 M� for i = 55�. At
the 99:73 per cent confidence level (3� for a Gaussian probability distribution), they fall in the
ranges (2:5–3:7)� 106 M� and (2:3–3:9)� 106 M�, respectively. In reality, small numerical errors
in the models might have distorted the �2 contours. We address this issue in Appendix 4.A.
Any numerical errors are small enough that they have no influence on our conclusion that
models without a dark mass are firmly ruled out. However, the possibility of small numerical
errors does increase the confidence bands on MBH. Based on the analysis in Appendix 4.A, we
conclude that MBH = (3:4� 0:7)� 106 M� at 68:3 per cent confidence, and MBH = (3:4� 1:6)�
106 M� at 99:73 per cent confidence. These estimates take into account both the observational
errors in the data and possible numerical errors in the models, and are valid for both inclinations
that were studied.

Eight selected models in Figure 4.6 are labeled as A–H, and are listed in Table 4.1. Figure 4.8
compares the model predictions to the observed rotation velocities and velocity dispersions for
all the models labeled in Figure 4.6. Models C&G are the overall best fits for the two inclinations.
Models B&F and D&H are (approximately) the best-fitting models for MBH = 1:9 and 5:4 �
106 M�, respectively. The latter models are marginally ruled out at the > 99% confidence level
(cf. the above discussion), although to the eye they do appear to reproduce the main features
of the data. They differ from the overall best-fitting models primarily in their predictions for
the HST velocity dispersions. The differences in the predictions for the ground-based data are
smaller (and invisible to the eye in Figure 4.8), but nonetheless more statistically significant
because of the smaller error bars for these data. Models A&E, the best fits without a central
dark mass, are indisputably ruled out. The main problem for these models is to fit the central
peak in the velocity dispersion. They come rather close to fitting the WHT observations, and
predict a central dispersion of � 84 km s�1. However, the models without a dark mass fail to
reproduce the higher central dispersion of � 91� 2 km s�1 measured with the CFHT (although

6A more robust way to incorporate the effects of random errors in the assignment of confidence bands would be
to use ‘bootstrapping’, in which one directly calculates the statistical distribution of models parameters by finding
the best-fit parameter combinations for different ‘realizations’ of the data set. Unfortunately, this is computationally
infeasible in the present context: even the analysis of the single (available) data set for M32 already takes weeks of
CPU time on a high-end workstation.



86 CHAPTER 4 IMPROVED EVIDENCE FOR A BLACK HOLE IN M32

FIGURE 4.7— Predictions of the best-fitting orbit-superposition models for i = 90� and i = 55� (labeled C and G
in Figure 4.6 and Table 4.1), compared to the kinematical HST, CFHT and WHT data. The models have nuclear
BHs of 3:4� 106 M� and 3:2� 106 M�, respectively. The HST data have the highest spatial resolution, and were
taken with a set of apertures aligned along the major axis. The ground-based data are long-slit measurements. For
the CFHT observations two independent sets of major axis data are available with a similar setup. For the WHT
observations data are available with the slit along the major axis, minor axis, two intermediate axes (major �45�),
and an axis parallel to the major axis but 400 offset from it. Shown from top to bottom are: rotation velocities,
velocity dispersions, and the Gauss-Hermite moments (when available) that measure deviations of the line-of-sight
VP shapes from a Gaussian. The data points are arranged equidistantly along the abscissa. The corresponding
distance from the nucleus in arcsec is illustrated schematically in the bottom panel. The WHT data were analyzed
by averaging spectra at positive and negative radii, so for these data only positive radii are shown. The model fits
to the data are excellent.
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FIGURE 4.8— Predicted rotation velocities and velocity dispersions for the orbit-superposition models A–D (top
panel) and E–H (bottom panel) defined in Figure 4.6 and Table 4.1. Models C&G are the overall best fits, models A&E
are the best fits without a central dark mass, and models B&F and D&H are (approximately) the best-fitting models
for MBH = 1:9 and 5:4� 106 M�, respectively. The data are as in Figure 4.7. The models without a BH manage to fit
the WHT data reasonably well, but are firmly ruled out by the HST data.

still only marginally), and don’t even come close to reproducing the HST dispersions, which
exceed 100 km s�1 in the central 0:100.
4.5.3 Smooth solutions

The top row in Figure 4.9 illustrates the orbital occupancies in integral space for the best-fitting
edge-on model (model C). Only a small fraction of the orbits in the library is used to fit the
constraints, while the remainder receives zero weight. This yields an equilibrium solution of
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the collisionless Boltzmann equation, but is not physically plausible.

Smoothness of the solutions in integral space can be enforced by adding linear regulariza-
tion constraints to the problem (Zhao 1996; chapter 3). We have explored this only in an ad hoc
way, merely to be able to assess the effect of smoothness constraints on the resulting fit to the
data. A model is defined as a set of masses m(Rc; �;w) in integral space. For each point that is
not on the boundary of the (Rc; �;w) grid, we measure the smoothness of the model (Press et
al. 1992; eq. [18.5.10]) through the second order divided differences (in each of the three vari-
ables, assuming for simplicity that the distances between adjacent grid points are equal in all
directions) of the function m(Rc; �;w)=m0(Rc). The function m0(Rc) is a rough approximation
to the energy dependence of the model, obtained, e.g., by studying the spherical isotropic limit
of the given mass density. The regularization constraints are then that the divided differences
should equal 0 � ∆, where the ‘error’ ∆ determines the amount of smoothing. Models with
∆ !1 have no smoothing, while models with ∆ ! 0 force m(Rc; �;w)=m0(Rc) to be a linear
function on the (Rc; �;w) grid.

The second and third rows in Figure 4.9 show the integral space for model C with the ad-
dition of either a modest (∆ = 5) or a large (∆ = 0:2) amount of regularization in the NNLS fit,
respectively. As the bottom panels show, the price paid for the increased smoothness is a some-
what poorer fit to the data. However, the fits are still quite good. This demonstrates that the
good fits to the data shown in Figure 4.7 are not primarily the result of the use of implausible
distributions in integral space. These distributions result from the numerical properties of the
problem, but there also exist smooth solutions which provide similar fits.

4.5.4 Dynamical Structure

Figure 4.10 shows the components of the second velocity moment tensor as function of radius,
for the edge-on models A–D and the i = 55� models E–H. Table 4.1 lists for two radial ranges
the average RMS velocities in km s�1 in each of the spherical coordinate directions, and also
includes the azimuthal dispersion �� � [hv2�i � hv�i2]1=2.

TABLE 4.1— Properties of selected models for M32

0:0700 � r � 0:900 0:900 � r � 1200
Model i MBH ϒ hv2�i1=2 �� �� �r hv2�i1=2 �� �� �r

deg 106 M� km s�1 km s�1 km s�1 km s�1 km s�1 km s�1 km s�1 km s�1

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

A 90 0.0 3.0 80 64 81 93 78 61 66 66
B 90 1.9 2.4 91 74 83 81 73 55 63 60
C 90 3.4 2.1 98 79 86 80 71 54 60 58
D 90 5.4 1.7 109 87 94 82 71 53 59 52
E 55 0.0 3.1 91 65 80 91 84 65 65 66
F 55 1.9 2.4 98 70 77 81 82 59 60 57
G 55 3.2 2.0 112 83 82 89 88 67 63 48
H 55 5.4 1.7 114 86 80 88 78 55 56 53

Column (1) lists the model label as indicated in Figure 4.6. Column (2) lists the inclination, column (3) the dark point
mass MBH, and column (4) the average mass-to-light ratio ϒ of the stellar population (in solar V-band units). These
parameters determine the gravitational potential of each model. For each potential, orbit-superposition was used to
determine the dynamical structure that best fits the combined HST and ground-based data for M32. Columns (5)–
(12) summarize the velocity ellipsoid shapes of the resulting models for two radial ranges. Columns (5)–(8) list the
mass-weighted average values of hv2�i1=2, ��, �� and �r in the radial range 0:0700 � r � 0:900. Columns (9)–(12) list the

same quantities for the radial range 0:900 � r� 1200 . The azimuthal dispersion is defined as �� � [hv2�i � hv�i2]1=2. As
discussed in the text, the models A and E are ruled out by the M32 data, while the best fits are models C and G.
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FIGURE 4.9— The top row shows the (�;w) integral space (defined as in Figure 4.5) for a selected set of energies,
for the best-fitting edge-on orbit-superposition model C defined in Figure 4.6 and Table 4.1. Each square in each
panel represents an orbit. The (logarithmic) grey-scale shows the fraction of the mass at the given energy that was
assigned to each orbit by the NNLS fit. Smoother solutions are obtained by adding regularization constraints to the
NNLS fit. The second and third rows show the integral space for the same model with a modest and a large amount
of regularization, respectively. Most of the mass resides at � > 0 (i.e., Lz > 0), which is obviously required to fit the
observed rotation of M32. The bottom panels show the fits of the models to the observed rotation velocities and
velocity dispersions. The model without regularization provides the best fit, but even for the smoothest model the
fits are still quite good.
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FIGURE 4.10— The four leftmost panels show the dynamical structure as function of radius for the orbit-
superposition models A–D and E–H defined in Figure 4.6, averaged over spherical shells. The displayed results
were obtained with a modest amount of regularization in the NNLS fit, to obtain smoother results. Only those radii
are shown for which the dynamical structure of the models is meaningfully constrained by kinematical data. The
curves show the RMS velocities in each of the spherical coordinate directions, normalized at each radius by the to-
tal RMS velocity. As a companion to this figure, Table 4.1 lists the average RMS velocities in km/s for two radial
ranges, and also includes the azimuthal dispersion �� � [hv2�i � hv�i2]1=2. Models A&E have no BH and invoke as
much radial motion as possible (under the constraint that the rotation curve is fit) to produce a peak in the observed
velocity dispersions. Nonetheless, they cannot fit the data (cf. Figure 4.8). The models with a BH are all dominated
by azimuthal motion at most radii. The rightmost panels show the predictions (obtained by solving the Jeans equa-
tions) for models that have the same gravitational potential as the orbit-superposition models C&G, but which have
a DF of the form f (E; Lz). These models are also dominated by azimuthal motion, and therefore provide a useful
approximation to the dynamics of M32. However, the f (E; Lz) models have hv2�i � hv2

r i, which is not the case for the
models that best fit the data.

By contrast to the models with a BH, the models A&E without a BH invoke a large amount
of radial motion in the central arcsec to produce a peak in the observed velocity dispersions
(cf. Binney & Mamon 1982). The maximum allowed radial anisotropy in the models is deter-
mined by the observed rotation velocities in M32, because dynamical models predict lower val-
ues of V=� when they are more radially anisotropic (Richstone, Bower & Dressler 1990; de Brui-
jne, van der Marel & de Zeeuw 1996). Figure 4.8 shows that the allowed radial anisotropy is by
far insufficient to fit the observed peak in the velocity dispersion profile without invoking a BH.

The models B–D and F–H, which represent the best fits for different potentials, all have a
similar dynamical structure: the second velocity moment tensor is dominated by azimuthal mo-
tion. This is most pronounced for the intrinsically flatter i = 55� models. The rightmost panels
in Figure 4.10 show the velocity moments for f (E; Lz) models with the same gravitational poten-
tials as models C&G. The f (E; Lz) models are similar to the best-fitting three-integral models, in
that they have an excess of azimuthal motion. This is why they have been so successful in fitting
ground-based data, including available VP shape parameters, and it shows that they provide a
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FIGURE 4.11— The quantity hv�i= hv2i1=2 as function of radius in the equatorial plane, for the models that best fit
the data, i.e., the models C and G defined in Figure 4.6 and Table 4.1. Solid curves show the predictions for the orbit
superposition models. As in Figure 4.10, a modest amount of regularization was used in the NNLS fit, and only those
radii are shown for which the dynamical structure of the models is meaningfully constrained by kinematical data.
Dotted curves show the predictions for oblate isotropic rotator models, obtained by solving the Jeans equations. The
inclined, and intrinsically flatter, model G rotates faster than the edge-on model C.

useful low-order approximation to the dynamical structure of M32. However, the f = f (E; Lz)
models have hv2

ri = hv2�i by definition, in contrast to the inequality between hv2
r i and hv2�i seen

in the best-fitting three-integral models. This explains the finding of Section 4.3.2 that f (E; Lz)
models cannot successfully reproduce all observed features of the kinematical data.

The second velocity moments hv2
ri and hv2�i can be combined with the mixed moment hvrv�i

to determine the tilt of the velocity ellipsoid in the meridional plane. For all the models A–
D and E–H we found hvrv�i to be small, and the velocity ellipsoids are more closely aligned
with spherical coordinate axes than with cylindrical coordinate axes (but they are not perfectly
aligned with either). This is not uncommon in three-integral models for axisymmetric systems
(e.g., Dejonghe & de Zeeuw 1988; Dehnen & Gerhard 1993; de Zeeuw, Evans & Schwarzschild
1996).

Figure 4.11 shows the quantity hv�i= hv2i1=2 in the equatorial plane, for the best-fitting mod-
els C and G. The inclined, and intrinsically flatter, model G rotates faster than the edge-on
model C. The predictions for oblate isotropic rotator models (�r = �� = ��) are shown for com-
parison. The edge-on model C rotates faster than an oblate isotropic rotator model for radii
r >� 0:500; the inclined model G rotates slower than the oblate isotropic rotator model. However,
overall the rotation rate is not too dissimilar from that for an oblate isotropic rotator model.

The combined results that the dynamical structure of M32 is not too far from that of an
f (E; Lz) model, and that its rotation rate is not too far from that of an oblate isotropic rota-
tor model, imply that the velocity dispersions (but not the RMS velocities) in M32 are not far
from isotropic. This is confirmed by the velocity dispersion values listed in Table 4.1. This
explains why the value of MBH determined here is similar to that determined from previous
studies: these assumed either isotropic velocity dispersions (e.g., Tonry 1987), a range of pos-
sible anisotropies that bracket isotropic models (e.g., Richstone, Bower & Dressler 1990), or
an f (E; Lz) DF (e.g., van der Marel 1994b). It is an interesting question what physical process
could have caused M32 to have the particular dynamical structure inferred here, in particular
because the DFs of (giant) elliptical galaxies are in general not well described by the f (E; Lz)
form (e.g., van der Marel 1991; Bender, Saglia & Gerhard 1994). The answer to this question is
currently unknown.
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FIGURE 4.12— Solid curves show the velocity dispersions predicted for the HST setup by edge-on f (E; Lz) models
with an extended nuclear dark mass. Data points are as in Figure 4.2. The models in the top panel have MBH =
3� 106 M�, those in the bottom panel have MBH = 6� 106 M�. The models have nuclear dark objects with scale radii
of � = 0, 0:0400, 0:100, 0:2500 and 0:500, as indicated. The models with the smallest � best fit the data.

We have not attempted to derive confidence bands on the dynamical structure of M32. This
is a much more difficult problem than the derivation of confidence bands on the model para-
meters (MBH;ϒ), and is beyond the scope of the present paper.

4.6 Models with an extended dark nuclear object

The results in the previous section demonstrate that M32 must have a massive dark object in its
nucleus. To obtain a limit on the size of this dark object, we have studied models in which it
has a finite size � � (cf. eq. [4.2]). Searching the parameter space of three-integral models with
different � is extremely computer-intensive. We have therefore restricted ourselves to f (E; Lz)
models with extended dark objects. This is not likely to bias our conclusions, because the best-
fitting three-integral models found in Section 4.5 are similar to two-integral models.

Figure 4.12 shows the predictions of edge-on f (E; Lz) models with extended nuclear dark
objects, for two representative values of MBH. As in the models of Section 4.3.1, the fraction
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FIGURE 4.13— Contour plots of the quantity �2� that measures the quality of the model fit to the HST velocity
dispersion measurements, for f (E; Lz) models with an extended dark nuclear object and an inclination of i = 90�
(edge-on) or i = 55�, respectively. The model parameters along the abscissa and ordinate are the nuclear dark mass
MBH and its scale radius �, respectively. The contours are defined as in Figure 4.6. The results show that the nuclear
dark mass in M32 must be less extended than � = 0:0600, independent of the inclination.

F of stars with Lz > 0 in each model was chosen to best fit the rotation curve. By adjusting
F, adequate fits to the rotation velocities can be obtained for most relevant models. Hence,
only the velocity dispersions are shown in the figure. The predicted dispersions are typically
constant or decreasing towards the center within the scale radius �. The HST data show a much
higher velocity dispersion in the center than further out. Hence, the extension of any possible
dark nuclear cluster cannot be large; Figure 4.12 suggests � <� 0:100. Figure 4.13 shows a contour
plot of the quantity �2� (eq. [4.3]), measuring the quality of the model fit to the HST dispersion
measurements, both for the edge-on case and for i = 55�. The best fit is obtained for � = 0 (the
point mass case discussed previously). The formal 99:73 per cent confidence level (assuming
Gaussian formal errors) rules out all models with � >� 0:0600 , independent of the inclination. The
models with the largest � must have a total mass of at least MBH � 4� 106 M�.

At the distance of M32, 100 = 3:39 pc. Hence, the upper limit on the scale radius corresponds
to � = 0:20 pc. Combined with a total mass in the cluster of MBH � 4� 106 M�, this implies
a central mass density of at least �0 = 1:1� 108 M� pc�3. The half-mass radius of a Plummer
model is rh = 1:30�. Hence, there must be � 2� 106 M� inside r <� 0:07800. The total V-band
luminosity inside this radius7 is 1� 105 L�, implying a luminous mass of 2:5� 105 M�. Hence,
the ratio of the total mass to luminosity inside this radius must be >� 22:5.

The observed kinematics constrain only the amount of mass in the system, not whether this
mass is luminous or dark. One can therefore fit the data equally well with models in which
the average mass-to-light ratio ϒ of the stellar population increases towards the nucleus, and
in which there is no dark mass. We have not explicitly constructed such models, but it is clear
from the preceding discussion that in such models ϒ must rise from� 2 in the main body of the
galaxy to >� 20 at r <� 0:100. Such a drastic variation in mass-to-light ratio would imply a strong

7This quantity does not depend sensitively on the assumed density cusp slope at very small radii. Gebhardt et
al. (1996) infer a somewhat steeper slope for M32 than used here, but their model has only 10 per cent more luminous
mass inside r <� 0:07800 than ours.
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change in the stellar population, accompanied by broad-band color gradients. The size of these
gradients depends on the actual stellar population mix, which is unknown. However, one may
use the properties of main sequence stars as a guideline. For these, a change in ϒ from 2 to 20
implies color changes ∆(U� B) � 0:9, ∆(B� V) � 0:6, and ∆(V � I) � 0:8 (using the tables of
stellar properties in Allen 1973). Such variations between 0:100 and 100 should have been obvi-
ous in photometric observations. However, neither subarcsec resolution ground-based imaging
(Lugger et al. 1992) nor pre-refurbishment HST imaging (Crane et al. 1993) have revealed any
significant color gradients in the central arcsec of M32. Post-refurbishment HST observations
(Lauer et al., private communication) also do not show strong color gradients. Thus, the nuclear
mass concentration in M32 cannot be due merely to a change in the mix of ordinary stars in the
nuclear region.

The absence of observed color gradients does not exclude the possibility of nuclear concen-
trations of brown dwarfs, white dwarfs, neutron stars, or stellar-mass BHs in M32. However,
at high densities, such clusters of dark objects are not stable over a Hubble time. This was
discussed by Goodman & Lee (1989), and their arguments were updated and extended in van
der Marel et al. (1997a). The latter paper shows that the new HST limit on the density of dark
material in M32 rules out all but the most implausible clusters, leaving a single massive BH as
the most likely interpretation of the data.

The kinematical predictions of our models depend on the assumed Plummer form of the
extended dark object. If it is a cluster of collapsed objects, this distributed dark mass may
itself be cusped (e.g., Gerhard 1994). However, the limit on � results from the fact that the
dispersion of stars with mass density (4.1) in a Plummer potential does not have a (strong)
central peak. This property is common to many alternative types of models, such as those
of King (e.g., Binney & Tremaine 1987), Hernquist (1990) and Jaffe (1983). These all produce
constant or decreasing dispersions inside their scale radius, as does the Plummer model. Hence,
the upper bound on � derived here is likely to be generic to most plausible density profiles for
the extended dark object. In addition, King, Jaffe and Hernquist models are more centrally
condensed than Plummer models, and would therefore require dark clusters of even higher
central densities to fit the data.

4.7 Conclusions and discussion

4.7.1 Summary of results

The main bottlenecks in proving the presence of nuclear BHs in quiescent galaxies from stellar
kinematical data have long been: (i) the restricted spatial resolution of ground-based data; and
(ii) lack of sufficiently general dynamical models to rule out constant mass-to-light ratio models
beyond doubt. The HST now provides spectra of superior spatial resolution. To fully exploit
the potential of these new data it is imperative to improve the modeling techniques that have
been used in the past decade. The situation is considerably more complicated than for gas disks
in (active) galaxies, where the assumption of simple circular orbits is often adequate. Interpre-
tation of stellar kinematical data for flattened elliptical galaxies ideally requires axisymmetric
(or even better, triaxial) dynamical models with completely general three-integral distribution
functions. Such models have not previously been constructed for any stellar kinematical BH
candidate galaxy. We therefore developed a technique for the construction of such axisymmet-
ric models, and used it to interpret our HST data for M32.

To guide the construction and interpretation of the three-integral models we first compared
the new HST data to the predictions of f (E; Lz) models, which have been used extensively to
interpret ground-based M32 data. Such models have the advantage that the DF can be cal-
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culated semi-analytically, but have the disadvantage of having a special dynamical structure,
with �r = �� everywhere. There is no a priori reason why any galaxy should have this property.
However, the fact that f (E; Lz) models fit the observed VP shapes inferred from ground-based
data to within� 2% (in terms of deviations from a Gaussian), suggested that the M32 DF might
in fact be close to the form f (E; Lz). We find here that f (E; Lz) models for M32 can also fit the
new HST data, and that this requires the presence of a nuclear dark mass, as was the case for the
ground-based data. However, the best fitting dark mass of MBH = (2:5–4:5)� 106 M� is larger
than the MBH = (2–3)� 106 M� that best fits the � 0:500 spatial resolution data from the CFHT,
and is even more different from the MBH = (1:5–2) � 106 M� that best-fits the � 0:900 spatial
resolution data from the WHT. Thus, under the assumption of an f (E; Lz) DF, the different data
sets cannot be fit with the same MBH. This indicates that the M32 DF is not of the form f (E; Lz),
although it might be close to it.

To obtain a model-independent estimate of the best-fitting MBH, and to firmly rule out mod-
els without any dark mass, it is necessary to study more general three-integral models. We have
made such models for M32, both with and without central BHs, and for various possible values
of the average mass-to-light ratio ϒ of the stellar population. The models were constructed to
fit all available kinematical HST, CFHT and WHT data, and the acceptability of each model was
assessed through the �2 of its fit to the data. The models demonstrate explicitly for the first time
that there is no axisymmetric constant mass-to-light ratio model that can fit the kinematical data
without invoking the presence of a nuclear dark mass, independent of the dynamical structure
of M32. A nuclear dark point mass of MBH = (3:4� 1:6)� 106 M� is required (with 1� and 3�
error bars of 0:7� 106 M� and 1:6� 106 M�, respectively, which includes the possible effect of
small numerical errors in the models). This mass is similar to that quoted by most previous
papers, but the confidence on the detection of a nuclear dark mass in M32 is now much higher.
Constant mass-to-light ratio models still come very close to fitting the ground-based data, and
only the new HST data make the case for a nuclear dark mass clear-cut.

The inclination of M32 cannot be inferred from the available surface photometry, and is
therefore a free parameter in the modeling. Ideally one would like to construct dynamical mod-
els for all possible inclinations (which would be very computer-intensive) and determine the
inclination that best fits the kinematical data. Here we have taken the more modest approach
of constructing models for only two representative inclinations: i = 90� (edge-on) and i = 55�.
The intrinsic axial ratios for these inclinations are q= 0:73 and q= 0:55, respectively. The three-
integral i = 55� models provide a better fit than the edge-on models, which suggests that M32 is
not seen edge-on. However, the allowed range for MBH does not depend sensitively on the as-
sumed inclination: models with no central dark mass are firmly ruled out for both inclinations.
So even though a more detailed study of the full inclination range for M32 would improve our
knowledge of the true inclination and intrinsic axial ratio of M32, it would probably not change
significantly the constraints on the central dark mass.

The best-fitting three-integral models are similar to f (E; Lz) models in that they have an
excess of azimuthal motion. This is why they have been so successful in fitting ground-based
data, including available VP shape parameters, and it confirms that they provide a useful low-
order approximation to the dynamical structure of M32. However, f (E; Lz) models do have�r � �� . This does not reproduce the inequality between �r and ��, nor the modest tilt of
the velocity ellipsoid indicated by the small hvrv�i term, seen in the best-fitting three-integral
models. This is why f (E; Lz) models cannot successfully explain all observed features of the
kinematical data.

To constrain the size of the dark object in M32 we have constructed f (E; Lz) models with
an extended dark nuclear object. These show that the HST data put an upper limit of 0:0800 =
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0:26 pc on the half-mass radius of the nuclear dark object, implying a central density exceeding
1� 108 M� pc�3. This limit on the density of dark material in M32 essentially rules out nuclear
clusters of planets, brown dwarfs, white dwarfs, neutron stars, or smaller mass BHs (van der
Marel 1997a). The absence of color gradients in the central arcsec of M32 implies that the nuclear
mass concentration can also not be attributed to a stellar population gradient. A single massive
nuclear BH therefore provides the most plausible interpretation of the data.

4.7.2 Dynamical stability

Axisymmetric dynamical models with a nuclear BH provide an excellent fit to all available
kinematical data for M32. However, to be physically meaningful, the models must also be
dynamically stable. In van der Marel, Sigurdsson & Hernquist (1997) we presented N-body
simulations of the f (E; Lz) models for M32. The models were found to be completely stable,
both for i = 90� and for i = 55�. This shows that dynamical stability is not a problem for the
models, and that the inclination of M32 cannot be meaningfully constrained through stability
arguments. We have not evolved N-body models for the best-fitting three-integral models, but
we expect these models to be stable as well, given their similarity to f (E; Lz) models.

4.7.3 Dynamical relaxation

The two-body relaxation time in M32 can be estimated as in, e.g., Binney & Tremaine (1987;
eq. [8-71]). Using the relevant quantities for our best-fitting dynamical model, we find for solar
mass stars in the central cusp (r <� 0:500) that trelax � 3 � 109 (r=0:100)�0:065 yr. The time scale
for ‘resonant relaxation’ (Rauch & Tremaine 1996) is of the same order. The central cusp must
therefore be evolving secularly over a Hubble time. However, the diffusion of stars in phase
space is slow enough that one may assume the evolution to be through a sequence of quasi-
equilibrium models. This justifies our approach of modeling M32 as a collisionless equilibrium
system. Studies of the secular evolution of the M32 cusp will be interesting, but will not change
the need for a nuclear dark object. In fact, the process of dynamical relaxation supports the
presence of a dark object: without a dark object the relaxation would proceed at a much more
rapid rate that is difficult to reconcile with observations (Lauer et al. 1992).

4.7.4 Triaxiality

One remaining uncertainty in our dynamical modeling is the possibility of triaxiality. After
the step from spherical models to axisymmetric models, triaxial models are the obvious next
step. However, there are several reasons to believe that for M32 this additional step will be
less important. First, M32 is known not to be spherical, but there is no reason why it cannot be
axisymmetric. There is no significant isophote twisting in M32, and no minor axis rotation. This
does not mean that M32 cannot be triaxial (we might be observing it from one of the principal
planes), but it also does not mean that M32 needs to be triaxial. Second, spherical constant
mass-to-light ratio models (without a nuclear dark mass) for ground-based M32 data failed to
fit by only a few km s�1, and it was quite conceivable that axisymmetry could fix this (which it
did, cf. Figure 4.15 below). However, axisymmetric constant mass-to-light ratio models for the
new HST data fail to fit the nuclear velocity dispersion by > 50 km/s, and this cannot likely be
fixed through triaxiality. Third, theoretical arguments suggest that strongly triaxial models with
density cusps as steep as in M32 may not be stable, owing to the fact that regular box-orbits are
replaced by boxlets and irregular orbits that may not be able to sustain a triaxial shape (Binney
& Gerhard 1985; Merritt & Fridman 1996; Merritt & Valluri 1996; see also the review by de
Zeeuw 1996). Rapidly-rotating low-luminosity elliptical galaxies like M32 always have steep
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power-law cusps (Faber et al. 1997), and may therefore be axisymmetric as a class (de Zeeuw
& Carollo 1996). This is consistent with statistical studies of their intrinsic shapes (e.g., Merritt
& Tremblay 1996). So, apart from the fact that triaxiality is unlikely to remove the need for a
central dark object in M32, it may even be so that M32 cannot be significantly triaxial.

4.7.5 Adiabatic black hole growth

The growth of a black hole into a stellar system is adiabatic if it occurs over a time scale that
is ‘long’ (see Sigurdsson, Quinlan, & Hernquist 1995 for a quantitative discussion) compared
to the typical orbital period of the stars. For the case of M32, the black hole formation can be
considered adiabatic if it took at least 106 yr. Young (1980) studied the adiabatic growth of BHs
in spherical isothermal models with central density �0 and core radius r0. The BH growth leaves
the mass density at large radii unchanged, but induces a central cusp � / r�1:5 for r ! 0. The
form of the density profile at intermediate radii is determined by the dimensionless parameter
M� � MBH=[4

3��0r3
0], which measures the ratio of the BH mass to the initial core mass. Lauer et

al. (1992) showed that the shape of the M32 brightness profile measured with HST can be well fit
with M� = 0:33� 0:11. The radial and density normalization implied by the data are then r0 =
3:0 pc and �0 = (4:2� 104)ϒ M� pc�3. This photometric model therefore implies that MBH=ϒ =
(1:6� 0:5) � 106 M�. Although this result depends somewhat on the assumed isothermality
of the initial distribution (Quinlan, Hernquist & Sigurdsson 1995), it is quite remarkable that
our best-fitting dynamical models have exactly MBH=ϒ = 1:6 � 106 M�, for both inclinations
that we studied. The M32 data are therefore fully consistent with the presence of a BH that
grew adiabatically into a pre-existing core. This is similar to the situation for M87 (cf. Young et
al. 1978; Harms et al. 1994).

Lee & Goodman (1989) extended Young’s calculations to the case of rotating models. For
the value of M� implied by the photometry, their models predict a profile of hv�i= hv2i1=2 that is
approximately flat with radius (with amplitude fixed by the axial ratio of the system). However,
this result depends very sensitively on the assumed rotation law of the initial model. The radial
variations in hv�i= hv2i1=2 seen in our best-fitting models (Figure 4.11) are probably equally
consistent with the adiabatic growth hypothesis.

4.7.6 Tidal disruption of stars

A star of mass m? and radius r? on a circular orbit of radius r will be tidally disrupted if r <�
rt � (2MBH=m?)1=3r? (e.g., Binney & Petit 1988). Thus, disruption of a solar type star by the
BH in M32 will occur inside rt = 4:2� 10�6 pc = 1:2� 10�6 arcsec. A disruption event will be
highly luminous, but is not predicted to occur more often than once every 104 yr (Rees 1988).
The minimum pericenter distance for a star with given (E; Lz) in a Kepler potential is rp;min =
Rc(E) (1�p1� �2), where as before, Rc is the radius of the circular orbit at the given energy and� � Lz=Lmax(E). The kinematical data for M32 only meaningfully constrain the DF for energies
with Rc(E) >� 0:100. For Rc(E) = 0:100, only stars with j�j < 5� 10�3 have rp;min < rt. The data
do not constrain variations in the DF over such a small range in �, and our dynamical models
therefore cannot address the existence and properties of the so-called ‘loss cone’ (Frank & Rees
1976; Lightman & Shapiro 1977). For the �-grid that we have employed, all solar type stars on
orbits with Rc(E) > 0:100 have rp;min > 2� 102 rt. Even giants with r? � 102r� have rp;min > rt.
This justifies our neglect of tidal disruption in the orbit calculations.
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4.7.7 Accretion onto the black hole

An interesting question is why BHs in quiescent galaxies aren’t more luminous (e.g., Kormendy
& Richstone 1995). For M32, the total X-ray luminosity is LX � 1038 erg s�1 (Eskridge, White &
Davis 1996), the far infrared luminosity is LFIR < 3� 1036 erg s�1 (Knapp et al. 1989), and for
the 6 cm radio emission �L� < 3� 1033 erg s�1 (Roberts et al. 1991). Part or all of the observed
X-ray emission may be due to low-mass X-ray binaries, so the total luminosity due to accre-
tion onto the BH in M32 is Lacc < 1038 erg s�1. By contrast, the Eddington luminosity of the BH
is LEdd = 4:3� 1044 erg s�1. For a canonical mass-loss rate of 1:5 M�(1011 L�)�1 yr�1 (Faber &
Gallagher 1976), the stars that are bound to the BH in M32 shed 1� 10�4 M� yr�1 of gas as a
result of normal stellar evolution. If a fraction f of this gas is steadily accreted with efficiency�, it produces a luminosity Lacc = � f (6:7� 1042) erg s�1. Thus either the accretion fraction f or
the accretion efficiency � must be very small in M32. Thin disk accretion with � � 0:1 requires
f < 1:5� 10�4, which is possible (the accretion fraction is difficult to predict theoretically, be-
cause it depends on the hydrodynamics of the stellar winds that shed the gas), but may be
implausibly low. Instead, it appears more likely that � is small, since there is a family of ‘advec-
tion dominated’ accretion solutions that naturally predict such low efficiencies. Models of this
type successfully explain the ‘micro-activity’ of the BH (Sgr A

?
) in our own Galaxy (Narayan, Yi

& Mahadevan 1995). In a typical accretion model of this type (Narayan & Yi 1995, their Fig. 11),
f <� 0:16 suffices to explain the upper bound on Lacc for M32.

4.7.8 Forthcoming observations

Future observations of M32 will include spectra with the new long-slit HST spectrograph STIS.
These will provide significantly better sky coverage than our FOS data, but the spatial resolution
will be similar. The high-resolution HST data can be complemented with that from fully two-
dimensional ground-based spectrographs, such as OASIS on the CFHT and SAURON on the
WHT. These combined data will yield improved constraints on the BH mass, on the orbital
structure and inclination of M32, and on possible deviations from axisymmetry.
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4.A �2 topology for orbit-superposition models

In this Appendix we discuss the topology of the �2(ϒ; MBH) contours for the edge-on orbit-
superposition models. The top panels of Figure 4.14 show the �2 contours when only (subsets
of) the ground-based WHT data are included in the fit. These panels can be compared to Fig-
ure 4.14d, which shows the contours for the case in which all WHT, CFHT and HST data are
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included. Figure 4.14a shows the �2 contours when only the major axis V and � WHT measure-
ments are fit. Binney & Mamon (1982) showed that a large range of gravitational potentials can
fit any given observed velocity dispersion profile. The valley seen in the �2 contours is a conse-
quence of this: it outlines a one-parameter family of models that can fit the data with different
velocity dispersion anisotropy. For a non-rotating spherical system, only models that require
negative second velocity moments are ruled out. For a rotating system like M32, the observed
rotation rate sets additional limits on the allowed radial anisotropy. For the case of the major
axis V and � WHT measurements, a no-BH model is just marginally acceptable at 99:73 per cent
confidence, cf. Figure 4.14a. For the lower-spatial resolution major axis V and � measurements
of Dressler & Richstone (1988) such a model is entirely acceptable. Figure 4.15 compares the
predictions of the best-fit axisymmetric orbit-superposition model without a BH to their data.
Richstone, Bower & Dressler (1990) concluded that these data could not be fit by any spherical
model without a BH. This is because spherical models allow less rotation, and therefore failed
to fit the observed rotation velocities. This underscores the importance of making axisymmetric
models for flattened galaxies like M32.

FIGURE 4.14— Contour plots of �2(MBH;ϒ) for edge-on orbit superposition models constructed to fit: (a) the
major axis WHT V and � measurements; (b) all major axis WHT measurements, including VP shapes; (c) all WHT
measurements, including various position angles; (d) all WHT, CFHT and HST data (same as Figure 4.6). Contours
are defined as in Figure 4.6. Heavy contours show the formal 99:73% confidence regions. Panel (e) shows how the
contours in panel (d) are modified if random errors are added to the predictions for each data point, to simulate
numerical errors in the models. Panel (f) shows for 100 simulations as in panel (e) the position of the �2 minimum
(solid symbols), and the lowest and highest MBH that fall within a 99:73% confidence contour (open symbols). These
simulations show that numerical errors cannot be responsible for the fact that models with either MBH < 1:8�106 M�
or MBH > 5:0� 106 M� fail to fit the data at this confidence level.
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FIGURE 4.15— Rotation velocities and velocity dispersions for the data of Dressler & Richstone (1988). The data
were measured from their figure 1; their two separate exposures were averaged. The seeing was 1:0400 FWHM,
the pixel size 0:58500 and the slit width 1:000. The curves show the predictions of the edge-on axisymmetric orbit
superposition model without a BH that provides the best fit. This model has ϒ = 3:6. As in Section 4.5.2, the orbit
superposition was done without regularization constraints. The model has hv2�i1=2 : �� : �� : �r = 1 : 0:82 : 1:02 : 1:16
averaged over the radial range 0:0700 � r� 0:900, and 1 : 0:91 : 0:86 : 0:90 averaged over the radial range 0:900 � r� 1200.
Thus, the velocity dispersions are (mildly) radially anisotropic in the central arcsec, and close to isotropic outside the
central arcsec. The model provides an adequate fit. These data could not be fit by any spherical model without a BH
(Richstone, Bower & Dressler 1990), which illustrates the importance of making axisymmetric models for flattened
galaxies like M32.

VP shape measurements provide independent constraints on the velocity dispersion aniso-
tropy. Figure 4.14b shows the �2 contours for edge-on orbit-superposition models when not
only the WHT major axis V and � measurements are fit, but also the major axis VP shape mea-
surements. With the inclusion of the VP shapes, models without a BH are ruled out. Figure 4.14c
shows the �2 contours when also the WHT measurements along other position angles are in-
cluded, which contracts the allowed MBH range to (1:1–5:1) � 106 M� at the formal 99:73 per
cent confidence level. The WHT data by themselves therefore rule out axisymmetric models
without a BH. However, the models without a BH still come very close to fitting the data, and,
e.g., fail to fit the central velocity dispersion by only 1–2 km s�1 (cf. Figure 4.8). So one cannot
make a particularly strong claim for a BH on the basis of the WHT data alone, because it is con-
ceivable that the fit could be improved with, e.g., only a minor amount of triaxiality. The same
holds for the CFHT data, but the new HST data do make the case for a BH in M32 clear-cut.

The contours for the case in which all the available WHT, CFHT and HST kinematical data
are included in the fit (Figure 4.14d) show one global �2 minimum, and a second local mini-
mum. The presence of a global minimum does not necessarily imply that the combined data
constrain a single best-fit potential. It might be that there is a small range of potentials that
all fit equally well, but that such a range of constant �2 would not be evident due to the finite
numerical accuracy of our technique. In Figure 4.14e we show explicitly how the topology of
the �2 contours might have been influenced by the possibility of small numerical errors in our
models. It was obtained from Figure 4.14d by recalculating the �2 contours after adding a ran-
dom error ∆V; � 2 [�2; 2] km/s and ∆hi 2 [�0:01; 0:01] (cf. Section 4.4) to the prediction for each
data point, for each (ϒ; MBH) combination. The results show that numerical errors can indeed
influence the �2 contours near the �2 minimum. Thus, the second minimum in Figure 4.14d
might be the result of numerical inaccuracies in our technique. However, the numerical errors
are small enough that they only have a negligible effect on the overall �2 topology. In particular,
models without a dark mass remain firmly ruled out.
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To assess the possible effect of numerical errors on the confidence bands for MBH, we con-
structed 100 figures like Figure 4.14e using different random realizations. For each we deter-
mined the position of the �2 minimum, and the minimum and maximum MBH for which there
is an ϒ such that the model with (MBH;ϒ) falls within the 99:73 per cent confidence region.
The results are plotted in Figure 4.14f. All allowed MBH values fall in the range MBH = (1:8–
5:0)� 106 M�. Thus, MBH = (3:4� 1:6)� 106 M� at 99:73 per cent confidence. Similar exper-
iments show that MBH = (3:4 � 0:7) � 106 M� at 68:3 per cent confidence. Experiments for
i = 55� produced similar results, and mass ranges that were either the same or slightly smaller.
Thus, we conclude that the 1� and 3� errors on the estimated MBH = 3:4� 106 M�, are 0:7 and
1:6� 106 M�, respectively.
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Chapter 5

A super–massive black hole
in the S0 galaxy NGC 4342

Cretton, N. & van den Bosch, F. C.
1999, ApJ, 514, 704

We present axisymmetric dynamical models of the edge–on S0 galaxy NGC 4342. This small low–
luminosity galaxy harbors, in addition to its outer disk, a bright nuclear stellar disk. A combination of
observations from the ground and with the Hubble Space Telescope (HST) has shown that NGC 4342
rotates rapidly and has a strong central increase in velocity dispersion.

We construct simple two–integral Jeans models as well as fully general, three–integral models. The
latter are built using a modified version of Schwarzschild’s orbit–superposition technique developed
by Rix et al. and Cretton et al. (chapters 2 and 3 of this thesis). These models allow us to reproduce
the full line–of–sight velocity distributions, or ‘velocity profiles’ (VPs), which we parameterize by a
Gauss–Hermite series. The modeling takes seeing convolution and pixel binning into account.

The two–integral Jeans models suggest a black hole (BH) mass between 3 and 6� 108 M�, depending
on the data set used to constrain the model, but they fail to fit the details of the observed kinematics.
The three–integral models can fit all ground–based and HST data simultaneously, but only when a
central BH is included. Models without BH are ruled out to a confidence level better than 99:73 per
cent. We determine a BH mass of 3:0+1:7�1:0 � 108 M�, where the errors are the formal 68.3 per cent
confidence levels. This corresponds to 2.6 per cent of the total mass of the bulge, making NGC 4342
one of the galaxies with the highest BH mass to bulge mass ratio currently known.

The models that best fit the data do not have a two–integral phase–space distribution function. They
have rather complex dynamical structures: the velocity anisotropies are strong functions of radius
reflecting the multi–component structure of this galaxy.

When no central BH is included the best fit model tries to fit the high central velocity dispersion by
placing stars on radial orbits. The high rotation velocities measured, however, restrict the amount of
radial anisotropy such that the central velocity dispersion measured with the HST can only be fit when
a massive BH is included in the models.

SEVERAL lines of evidence suggest that active galactic nuclei (AGNs) are powered by accre-
tion onto a super–massive black hole (BH) (Lynden–Bell 1969; Rees 1984). The much higher

volume number density of AGNs observed at redshift z � 2 than at z = 0, suggests that many
quiescent (or ‘normal’) galaxies today must have gone through an active phase in the past, and
therefore harbor a massive BH as well. Such a BH will significantly influence the dynamics
of the galaxy inside a radius of influence, rinf = GMBH=�2, where � is a characteristic velocity
dispersion of the stars in the center. In particular, hydrostatic equilibrium requires that the rms
velocities of the stars surrounding a massive BH follow an r�1=2 power–law (Bahcall & Wolf
1976; Young 1980).

Since the late 70s, combined imaging and spectroscopy of the central regions of galaxies
has suggested that massive BHs should be present in a number of early–type galaxies (see Ko-
rmendy & Richstone 1995 for a review). Conclusive dynamical evidence for the presence of a
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central BH requires that a model with a BH can fit all observations (photometric and kinematic),
and that no model without a BH can provide an equally good fit. Such conclusive evidence can
only be inferred from observations that probe well inside the radius where the BH dominates
the dynamics. Up to a few years ago, most claimed BH detections were based on observations
with spatial resolutions of similar size as the radii of influence of the inferred BH masses (Rix
1993). This, together with the limited amount of freedom in the models used to interpret the
data, has hampered an unambiguous proof for the presence of these BHs (i.e., the observed
kinematics could not be confronted with all possible dynamical configurations without a BH).
Often spherical models were used even when the observed flattening was significant. If the
models were axisymmetric, the distribution function (hereafter DF) was often assumed to de-
pend only on the two classical integrals of motion, energy and vertical angular momentum;
f = f (E; Lz). This implies that the velocity dispersions in the radial and vertical directions are
equal (i.e., �R = �z). It is well–known that strong radial anisotropy in the center of a galaxy re-
sults in a high central velocity dispersion, mimicking the presence of a massive BH (cf. Binney
& Mamon 1982). Conclusive evidence for a BH therefore requires that one can rule out radial
anisotropy as the cause of the high velocity dispersions measured, and models must thus be
sufficiently general.

Recently two major breakthroughs have initiated a new era in the search for massive BHs
in normal galaxies. First of all, we can now obtain kinematics at much higher spatial resolution
(down to FWHM � 0:100), using specially–designed spectrographs, such as the Subarcsecond
Imaging Spectrograph (SIS) on the Canada–France–Hawaii Telescope, or the Faint Object Spec-
trograph (FOS) and STIS aboard the HST. This allows us to probe the gravitational potential
much closer to the center, where the BH dominates the dynamics. Not only has this improved
the evidence for massive BHs in several old BH–candidate galaxies (M31, Ford et al. 1998; M32,
van der Marel et al. 1998, chapter 4 of this thesis; M87, Harms et al. 1994, Macchetto et al. 1997;
NGC 3115, Kormendy et al. 1996a; NGC 4594, Kormendy et al. 1996b), but it has also provided
new cases (M84, Bower et al. 1998; NGC 3377, Kormendy et al. 1998; NGC 3379, Gebhardt et
al. 1999; NGC 4261, Ferrarese, Ford & Jaffe 1996; NGC 4486B, Kormendy et al. 1997; NGC 6251,
Ferrarese, & Ford 1999; and NGC 7052, van der Marel & van den Bosch 1998). Secondly, the
revolutionary increase in computer power has made it possible to investigate a large number of
fully general, three–integral models based on the orbit–superposition method (Schwarzschild
1979). In the past decade, this method has been used to build a variety of spherical, axisymmet-
ric and triaxial models (e.g., Schwarzschild 1982; Pfenniger 1984; Richstone & Tremaine 1984,
1988; Zhao 1996). Levison & Richstone (1985), Richstone & Tremaine (1985), and Pfenniger
(1984) showed how to include rotation velocities and velocity dispersions as kinematic con-
straints. More recently, Rix et al. (1997, chapter 2 of this thesis) and Cretton et al. (1999, chapter
3 of this thesis) extended this modeling technique even further by fitting to the entire velocity
profiles (see also Richstone 1997). Van der Marel et al. (1997) used this to build fully general,
axisymmetric models of M32, and showed convincingly that M32 harbors a massive BH (see
also chapter 4). Recent review papers on this rapidly evolving field include Ford et al. (1998),
Ho (1998), Richstone (1998), and van der Marel (1997).

In many galaxies where the presence of a BH has been suggested, a nuclear disk, seen close
to edge–on, is present. These disks are either in gaseous form (M84, M87, NGC 4261, NGC 4594,
NGC 6251, NGC 7052), or made up of stars (NGC 3115). It is easier to detect BHs in edge–on
systems with disks, where one can use both the measured rotation velocities and the velocity
dispersions to determine the central mass density. It is therefore not surprising that BHs have
predominantly been found in galaxies with nuclear disks. Furthermore, nuclear disks allow
a good determination of the central mass density of their host galaxies. Gaseous disks have
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the advantage that their kinematics can be easily measured from emission lines. Since gas in a
steady–state disk can only move on non–intersecting orbits, the measured rotation velocities of
a settled gas disk, in the equatorial plane of an axisymmetric potential, correspond to the circu-
lar velocities, Vc(R)=pRdΦ=dR. The rotation curve of a nuclear gas disk therefore provides a
direct measure of the central potential gradient, and thus of the central mass density. However,
often the gas disks are not in a steady state; many show a distorted morphology (e.g. M87,
see Ford et al. 1994), and non–gravitational motion, such as outflow, inflow or turbulence can
be present and complicate the dynamical analysis (e.g., NGC 4261, Jaffe et al. 1996; NGC 7052,
van den Bosch & van der Marel 1995). Nuclear stellar disks do not suffer from this, but have
the disadvantage that their kinematics are much harder to measure. First of all, the kinemat-
ics have to be determined from absorption lines rather than emission lines, and secondly, the
line–of–sight velocity distributions, or velocity profiles (VPs), measured are ‘contaminated’ by
light from the bulge component. However, van den Bosch & de Zeeuw (1996) showed that with
sufficient spatial and spectral resolution one can resolve the VPs in a broad bulge–component
and a narrow disk–component. From these VPs the rotation curve of the nuclear disk can be de-
rived, providing an accurate measure for the central mass density. Therefore, galaxies with an
embedded nuclear disk (either gaseous or stellar) observed close to edge–on are ideal systems
to investigate the presence of massive BHs.

In this paper we discuss the case of NGC 4342; a small, low–luminosity (MB = �17:47)
S0 galaxy in the Virgo cluster. The galaxy is listed as IC 3256 in both the Second and Third
Reference Catalogues of Bright Galaxies, since in the past it has occasionally been confused with
NGC 4341 and NGC 4343 (see Zwicky & Herzog 1966). At a projected distance of � 3000 SE of
NGC 4342, a small galaxy is visible. It is uncertain whether this is a real companion of NGC 4342
or whether it is merely close in projection. HST images of NGC 4342 revealed both an outer
disk, as well as a very bright nuclear stellar disk inside � 100 (van den Bosch et al. 1994; Scorza
& van den Bosch 1998). It is a normal galaxy, with no detected ISM (Roberts et al. 1991), and
with small color gradients (van den Bosch, Jaffe & van der Marel 1998, hereafter BJM98). For its
size and luminosity, it does however reveal a remarkably large central velocity dispersion and
a very steep rotation curve (see BJM98). Unfortunately, the spectral resolution of the available
kinematic data is insufficient to actually resolve the VPs in disk and bulge components. In
order to determine the central mass density in NGC 4342, we thus have to construct dynamical
models of the entire system: bulge and disk components. Here we present simple two–integral
Jeans models as well as fully general three–integral models, and we provide evidence for the
presence of a central massive dark object (MDO) of � 3� 108 M�. Throughout this paper we
assume the MDO to be a BH, but we discuss alternatives in Section 5.6.2.

In Section 5.1 we briefly discuss the data used to constrain the models and in Section 5.2
we describe our mass model. In Section 5.3 we show the results of some simple two–integral
modeling, and we discuss its shortcomings. Section 5.4 describes the general outline of the
three–integral modeling technique. In Section 5.5 we discuss shortcomings of the velocity pro-
file parameterization used when applied to dynamically cold systems, and present a modified
approach. The results of the three–integral modeling are discussed in Section 5.6. Finally, in Sec-
tion 5.7, we sum up and present our conclusions. Throughout this paper we adopt a distance
of 15 Mpc for NGC 4342, consistent with the distance of the Virgo cluster (Jacoby, Ciardullo &
Ford 1990).
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FIGURE 5.1— Contour maps of the WFPC2 I–band image of NGC 4342 at two different scales: 3200 � 3200 (left–
hand panel) and 800 � 800 (right–hand panel). Superimposed are the contours of the MGE model of the intrinsic
surface brightness convolved with the HST PSF (see Section 5.2).

5.1 The data

All data used in this paper are presented and discussed in detail in BJM98. Here we merely
summarize.

5.1.1 Photometric data

BJM98 used the Wide Field and Planetary Camera 2 (WFPC2) aboard the HST to obtain U, V
and I band photometry of NGC 4342. The spatial resolution of these images is limited by the
HST Point Spread Function (FWHM � 0:100) and the size of the pixels (0:045500 � 0:045500). The
full field–of–view covers about 3500� 3500. Figure 5.1 shows contour plots at two different scales
of the I–band image. The presence of the nuclear disk is evident from the highly flattened, disky
isophotes inside 1:000.
5.1.2 Kinematic data

Using the ISIS spectrograph mounted at the 4.2m William Herschel Telescope (WHT) at La
Palma, BJM98 obtained long–slit spectra of NGC 4342 along both the major and the minor axis.
The spectra have a resolution of �instr = 9 km s�1, and were obtained with a slit width of 1:000
under good seeing conditions with a PSF FWHM of 0:8000 (major axis) and 0:9500 (minor axis).
After standard reduction, the parameters (
;V; �; h3; h4) that best fit the VPs were determined
using the method described in van der Marel (1994). These parameters quantify the Gauss–
Hermite (GH) expansion of the velocity profile L (v) as introduced by van der Marel & Franx
(1993):

L (v) = 
��(w)

 
1+ 4

∑
j=3

h jH j(w)

! ; (5.1)

where

w � (v�V)=�; (5.2)
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FIGURE 5.2— Observed rotation velocities V and velocity dispersions � (as determined from the best–fitting Gaus-
sian, see text) along the major axis of NGC 4342 obtained with the WHT (crosses) and the FOS (solid dots). The
gradient of the rotation velocity and the central velocity dispersion increase considerably going to the four times
higher spatial resolution of the FOS. See BJM98 for details on the data.

and �(w)= 1p
2� e� 1

2 w2 : (5.3)

Here v is the line–of–sight velocity, H j are the Hermite polynomials of degree j, and h j are
the Gauss–Hermite coefficients. The first term in equation (5.1) represents a Gaussian with
line strength 
, mean radial velocity V, and velocity dispersion �. The even GH–coefficients
quantify symmetric deviations of the VP from the best–fitting Gaussian, and the odd coefficients
quantify the asymmetric deviations.

We have averaged the kinematic WHT data at positive and negative radii. In this way we
obtain sets of (V; �; h3; h4) at 19 different positions along the major axis and 8 along the minor
axis.

BJM98 also obtained FOS spectra at 7 different aperture positions, all inside the central
0:500 of NGC 4342, using the circular 0:2600-diameter aperture (the FOS 0.3–aperture). Due to
the limited signal–to–noise ratio (S=N) of these spectra, only (
;V; �) of the best–fitting Gaus-
sian could be determined. Rotation velocities and velocity dispersions along the major axis of
NGC 4342 for both the WHT (crosses) and FOS (solid dots) are shown in Figure 5.2. The central
rotation gradient, as measured with the FOS, is extremely steep (V � 200 km s�1 at 0:2500 from
the center). In addition, the velocity dispersion increases from � 90 km s�1 at the outside (the
‘cold’ outer disk) to 317 km s�1 in the center as measured with the WHT. The central velocity
dispersion increases to 418 km s�1, when observed at four times higher spatial resolution with
the FOS.

5.2 The mass model

We have used the Multi–Gaussian Expansion (MGE) method developed by Emsellem, Monnet
& Bacon (1994, hereafter EMB94) to build a mass model for NGC 4342. The method assumes
that both the PSF and the intrinsic surface brightness are described by a sum of Gaussians,
each of which has 6 free parameters: the center (x j; y j), the position angle, the flattening q0j, the

central intensity I0j, and the size of the Gaussian along the major axis, expressed by its standard
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deviation a0j. The best–fitting parameters of the different Gaussians are determined using an

iterative approach in which additional components are added until convergence is achieved
(see EMB94 for details on the method). This method is well suited for complicated, multi–
component galaxies such as NGC 4342.

We fitted the HST I–band PSF by a sum of 5 circular (i.e., q0j = 1) Gaussians (see BJM98).

Using this model PSF we derived the parameters of the N Gaussians describing the intrinsic
surface brightness (i.e., deconvolved for PSF effects) by fitting to the HST I–band image of
NGC 4342. We forced the N Gaussians to have the same position angle and center, which yields
an axisymmetric mass model (see below). Therefore, the model is described by 3N + 3 free
parameters, which are simultaneously fit to the image. We achieved convergence with N = 11
Gaussian components. The results of the fit are shown in Figure 5.1, where we show contour
plots of the I–band image with superimposed contours of the convolved surface brightness of
the MGE model. The fit is excellent, except for a small discrepancy at the outside. This is due
to slight twisting of the isophotes at large radii (see BJM98). Since our model is axisymmetric,
this cannot be modeled. Nevertheless, the discrepancy is small, and is unlikely to affect our
conclusions on the dynamics of the central region. The parameters of the different Gaussian
components are listed in Table 5.1.

The total luminosity of the MGE model in the I–band is LI = 3:57� 109 L�. This yields MI =�19:86. The absolute blue magnitude of NGC 4342, at a distance of 15 Mpc, is MB = �17:47
(Sandage & Tammann 1981), and we thus find B� I = 2:39. This is consistent with the col-
ors of NGC 4342 presented by BJM98. They find U � V � 1:5 and V � I � 1:3. We thus de-
rive B� V � 1:09, in good agreement with the average value for early–type galaxies (Faber et
al. 1989). If we assume that the luminosity distribution of the bulge corresponds to the Gaussian
components rounder than q0j = 0:3, we find that the bulge makes up � 52 per cent of the total

luminosity of NGC 4342. The outer disk, described by Gaussian components 9 and 10, makes
up an additional 46:5 per cent, and the nuclear disk (modeled by Gaussian component 4) adds
only about 1:5 per cent to the total luminosity. There is no reason that the mathematical compo-
nents correspond to actual physical components, but at least this gives an order–of–magnitude
description of the luminosities of the bulge and the two disk components. A more accurate

TABLE 5.1— Parameters of MGE model for the deconvolved I–band surface brightness.

Index j I 0j a0j q0j LI; j
(1) (2) (3) (4) (5)

1 490833.0 0.032 0.817 1:40� 107

2 99417.9 0.101 0.865 2:92� 107

3 67415.3 0.282 0.601 1:07� 108

4 84108.1 0.343 0.136 4:47� 107

5 28511.8 0.394 0.856 1:26� 108

6 15529.3 0.753 0.622 1:82� 108

7 8490.8 0.756 1.000 1:61� 108

8 6055.4 1.866 0.665 4:66� 108

9 2951.4 4.419 0.250 4:79� 108

10 1572.8 9.229 0.266 1:18� 109

11 229.9 11.854 0.723 7:76� 108

Col. (1): Index number of each Gaussian; col. (2) its central sur-
face brightness; col. (3) its standard deviation (which expresses
the size of the Gaussian along the major axis); col. (4) its flatten-
ing; and col. (5) its total I–band luminosity. All Gaussians have
the same position angle and the same center.
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disk–bulge decomposition, which yields similar results, is discussed in Scorza & van den Bosch
(1998).

Assuming that the density is built up from a sum of three–dimensional Gaussians stratified
on spheroids, one can, for any inclination angle i, analytically calculate the density distribution
from the MGE fit to the intrinsic surface brightness. The mass density of such an MGE model is
given by �(R; z)= ϒ∑

j

I jexp

"� 1

2a2
j

�
R2+ z2

q2
j

�#; (5.4)

where ϒ is the mass–to–light ratio, and I j, a j and qi are related to I0j, a0j, q0j and i (see EMB94).

The potential that corresponds to this density distribution follows from solving the Poisson
equation. This yields

Φ(R; z)=�4�Gϒ∑
j

a2
j q j I j

Z 1

0
exp

"� t2

2a2
j

�
R2+ z2

1� e2
j t

2

�#
dtq

1� e2
j t

2
; (5.5)

where e2
j = 1� q2

j .

The inclination angle is well constrained by the thinness of the nuclear disk: i > 83o (Scorza
& van den Bosch 1998). Throughout we assume that NGC 4342 is observed edge–on (i.e., i =
90o). Given the lower limit on the inclination angle of 83o, this assumption does not significantly
influence the conclusions presented in this paper.

5.3 Jeans modeling

5.3.1 Formalism

The three–integral modeling described in the next section requires large amounts of CPU time.
We therefore decided to first explore parameter space of the models (i.e., mass–to–light ratio and
mass of the possible BH) by solving the Jeans equations and assuming that the phase–space dis-
tribution function depends only on the two classical integrals of motion. The Jeans equations
for hydrostatic equilibrium are moment equations of the collisionless Boltzmann equation (see
Binney & Tremaine 1987). They relate the velocity dispersion tensor b�2 and the streaming mo-
tion v to the density � and potential Φ. For an axisymmetric system with distribution function
f (E; Lz) one always has �R = �z and vRvz = 0, and the Jeans equations in cylindrical coordinates
reduce to @(��2

R)@R
+ ���2

R � v2�
R

+ @Φ@R

�= 0; (5.6)@(��2
z )@z
+ �@Φ@z

= 0: (5.7)

Here :̄ denotes the local average over velocities. From equation (5.7) and �(R; z) and Φ(R; z),
one can, at every point (R; z) in the meridional plane, calculate �2

R (= �2
z) by simple integration.

By rewriting equation (5.6), one can compute v2� = v�2 + �2� without the need of performing
a numerical (ill–conditioned) derivative (see e.g. Hunter 1977; Simien, Pellet & Monnet 1979;
Binney, Davies & Illingworth 1990).

The expressions for �2
R and v2� for the density distribution of equation (5.4) are given in

EMB94 (their equations [42] and [44]). The Jeans equations do not prescribe how v2� splits in
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streaming motion v� and azimuthal velocity dispersion ��. We follow the approach introduced
by Satoh (1980), and write

v� = k
q

v2� � �2
R; (5.8)

such that we can control the anisotropy ��=�R by means of the free parameter k. For k = 1
the model is fully isotropic with �� = �R = �z. Once k has been fixed one can project the
luminosity–weighted dynamical quantities on the plane of the sky (x0; y0) to yield the projected
rotation velocities

Vrot(x
0; y0) = �1

S(x0; y0) Z 1�1 � v� sin i cos� dz0; (5.9)

and the rms velocities

V2
rms(x

0; y0) = 1

S(x0; y0) Z 1�1 ���2
z cos2 i+ �2

R sin2 � sin2 i+ (�2� + v�2) cos2 � sin2 i
�

dz0: (5.10)

Here � = �=ϒ is the luminosity density and S(x0; y0) is the projected surface brightness at po-
sition (x0; y0). Vrot and V2

rms are the true first and second order moments of the line–of–sight
velocity distribution. The projected velocity dispersion �p(x0; y0) is simply derived from�p(x0; y0) =qV2

rms(x
0; y0)�V2

rot(x
0; y0): (5.11)

It is straightforward to include a BH in such a model, by simply adding �GMBH=pR2+ z2 to
the stellar potential (5.5).

5.3.2 Application to NGC 4342

We use the Jeans equations to calculate the predicted rotation velocities and velocity dispersions
for the luminosity distribution of NGC 4342. We assume that the stellar mass–to–light ratio ϒ
and the anisotropy parameter k are constant throughout the galaxy. We calculate Vrot and V2

rms

(using equations [5.9] and [5.10]) on a two–dimensional grid on the sky. The grid is logarithmic
in r (in order to properly sample the strong gradients near the center), and linearly sampled in �.
Once Vrot and V2

rms are tabulated, we convolve them with the PSF of the observations, weighted
by the surface brightness. After pixel binning, taking the proper slit width into account, these
are compared to the observations.

The V and � determined from the GH fitting to the WHT VPs cannot be compared directly
to Vrot and �p derived from the modeling discussed above: the latter ones correspond to the
true moments of first and second order of the VPs, whereas the former ones correspond to the
best–fitting Gaussian. We therefore recalculated the VP from V, �, h3 and h4, from which we
then estimate the first and second order moments for direct comparison with the Jeans models.

The results are shown in Figure 5.3, where we plot Vrot, Vrms and �p of the VPs along the
major axis for both the WHT and the FOS data. Also plotted are predictions for four models,
that only differ in the mass of the central BH (0, 3, 5 and 10� 108 M�). All models have i = 90o,
ϒI = 6:2 M�= L� and k = 1 (i.e., all models are fully isotropic). For this value of k, we obtain the
best fit to the observed velocity dispersion outside � 200. However, Vrot is not very well fitted:
the wiggles in the rotation curve are not reproduced by the model. One can alter k, as function
of radius, such that we fit these wiggles, but at the cost of introducing them in the velocity
dispersion profile. This is due to the poor fit of the Jeans models to the rms velocities (see lower
left panel of Figure 5.3). V2

rms depends only on the sum of �2� and v�2 (see equation [5.10]) and is
therefore independent of k. Consequently, the Jeans models cannot simultaneously fit Vrot and
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FIGURE 5.3— Results of the Jeans modeling. The solid dots with errorbars indicate the observed rotation velocities
and velocity dispersions. Overplotted are four models that differ only in the mass of the central BH (0, 3, 5 and 10�
108 M�). All models have fully isotropic velocity dispersions, and a stellar mass–to–light ratio of ϒI = 6:2 M�= L�.
The three panels on the left show the WHT kinematics and the model predictions for Vrot, �p and Vrms. The model
with MBH = 3� 108 M� provides the best fit to the velocity dispersions. Neither of the four models provides an
accurate fit to the rotation velocities (see also Figure 5.4). The panels on the right compare the model predictions
with the HST/FOS kinematics. Both the rotation velocities and the velocity dispersions suggest the presence of a
BH with a mass of� 6� 108 M�.
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FIGURE 5.4— The ratio Vobs=Vmod of the observed rotation velocities over the rotation velocities predicted by the
isotropic Jeans model with ϒI = 6:2 M�=L� and MBH = 3� 108 M�, as function of the local, projected ellipticity of the
isophotes. Only results beyond 200 are shown. At smaller radii seeing influences the observed quantities significantly.
There is a clear correlation in that the Jeans model underpredicts the rotation velocities in the moderately flattened
region, and overpredicts the rotation velocities in the radial interval where the isophotes are strongly flattened, and
thus dominated by the light of the outer disk component.�p along the major axis. This suggests that the assumption made, i.e., f = f (E; Lz), is wrong,
and that three–integral models are required.

The Jeans models without a central BH clearly underpredict the central velocity dispersion
(for both the WHT and the FOS measurements), as well as the central rotation gradient mea-
sured with the FOS. Models with a massive BH provide a much better fit. The actual mass of
the BH depends on the data set used to constrain the model: the WHT data suggests a BH mass
of � 3� 108 M�, whereas the FOS data are best fitted with MBH � 6� 108 M�. So although the
two–integral Jeans modeling cannot fit all the observed kinematics, it does suggest that a BH of
a few times 108 M� may be present in the center of NGC 4342.

In Figure 5.4 we plot the ratio of the observed rotation velocity over the rotation velocity
of the best–fitting isotropic Jeans model, Vobs=Vmod (along the major axis), versus the local ob-
served ellipticity (in I–band) of NGC 4342. There is a clear correlation in the sense that the Jeans
models underpredict the rotation velocity in the strongly flattened region, and overpredict Vrot

in the less flattened region. The ellipticity is a measure of the local disk–to–bulge ratio, and
this therefore suggests that disk and bulge have different velocity anisotropies. Since Vrot scales
with

p
ϒ , another possibility may be that the disk and bulge are made up of different stellar

populations (whose mass–to–light ratios are different by almost a factor two). However, the
separate components (bulge, nuclear disk and outer disk) do not stand out as separate entities
in either the U� V or the V� I color images (see BJM98), rendering this explanation improba-
ble.
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5.4 Three–integral modeling

In order to investigate the presence of a � 3–6� 108 M� BH as suggested by the Jeans models,
we now construct fully general, axisymmetric models of NGC 4342. We use an extension of
Schwarzschild’s (1979) orbit–superposition method (see de Zeeuw 1997), described in chapter
2 and 3 of this thesis. The main method, but for spherical systems, is outlined in chapter 2.
The application to axisymmetric systems is discussed in chapter 3. Here we briefly outline the
method, and we refer the interested reader to the relevant chapters for details and tests of this
modeling technique.

5.4.1 The method

The first step of the method is to integrate orbits in the combined potential Φstars +ΦBH. Each
orbit is then projected onto the space of observables, taking convolution with the PSF and pixel
binning into account. Finally, a non–negative least–squares algorithm is used to determine the
distribution of orbit weights that best fits the observational data (taking the observational errors
into account), while also reproducing the luminous density distribution of the model.

Throughout we limit ourselves to models with an inclination angle i = 90o, and we assume
that the stellar population has a constant mass–to–light ratio. Therefore, each model is char-
acterized by only two free parameters: the mass–to–light ratio, ϒI , and the mass of the black
hole, MBH. Our aim is to find the set (MBH;ϒI) that best fits the available constraints (surface
brightness and velocity profiles).

5.4.2 The orbit library

The motion of a star in an axisymmetric potential, for which E and Lz = Rv� are conserved, can
be reduced to motion in the meridional (R; z)–plane, in the effective potential Φeff = Φ(R; z)+
L2

z=(2R2). The orbit is constrained within a region bounded by the zero velocity curve (ZVC)
defined through E = Φeff(R; z).

Each orbit in an axisymmetric potential Φ(R; z) admits two integrals of motion: energy E =
Φ(R; z)+ 1

2 v2 and vertical angular momentum Lz = Rv�. Regular orbits admit one additional
integral, I3, which in general is not known analytically. Such an orbit is confined to a sub–space
inside the ZVC. We only found a very small fraction of our orbit catalog to be irregular.

The orbit library has to be set up such that one properly samples the full extent of phase
space. The sampling has to be sufficiently dense to suppress discreteness noise, but is limited
by the amount of available CPU time. After some testing we have chosen to calculate orbits on
a 20� 20� 7 (E; Lz; I3)–grid. Each energy is uniquely defined by a circular radius Rc according
to

E = 1

2
Rc

@Φ@R

����
R=Rc

+ Φ(Rc; 0): (5.12)

The 20 energies are sampled logarithmically between Rc(E) = 0:0100 and Rc(E) = 6000. These
values were chosen such as to encompass the major fraction of the total mass of the galaxy. The
mass inside Rc = 0:0100 is only a fraction of 3:25� 10�5 of the total mass, whereas a fraction
of � 2:85 � 10�6 of the mass is located outside Rc = 6000. For each energy, we calculate the
maximum vertical angular momentum

Lz;max(E) =sR3
c

�@Φ@R

�
(Rc;0)

; (5.13)
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which corresponds to the circular orbit with energy E, and sample j�j = jLzj=Lz;max on a linear
grid of 10 values between 0.01 and 0.99. Hence, the purely circular and radial orbits are pre-
sumed to be represented by their closest neighbors on the grid, but are not explicitly calculated.
At each value of j�j, only the orbit with positive angular momentum has to be integrated, since
its counterpart (Lz =��Lz;max) is simply a mirror reflection around zero velocity. Since the third
integral I3 can generally not be expressed explicitly in terms of the phase–space coordinates, we
use the method suggested by Levison & Richstone (1985), and take the starting point on the
ZVC as a numerical representation of the third integral (see also chapter 3). For that purpose
we first calculate, for each (E; Lz)–pair, the locus (Rtt; ztt) on the ZVC of the ‘thin tube orbit’. For
a certain value of E and Lz, this is the only orbit that touches the ZVC at only one value of R.
All other regular orbits touch the ZVC at two different values of R. We sample I3 by linearly
sampling the R–coordinate of the orbit’s starting point on the ZVC (Rzvc) between Rtt and Rmax,
where Rmax is the maximum extent of the ZVC in the equatorial plane.

Since the calculation of the potential (equation [5.5]) and the forces all require the evalu-
ation of a numerical quadrature, we have calculated them on a 4000 � 300 (R; �)–grid in the
meridional plane. The grid is sampled linearly in � between 0 and �=2, and logarithmically
in R between 10�4 and 103 arcseconds. Each orbit is integrated for 200 radial periods, using
linear interpolation between grid points to evaluate the potential and forces. On average, the
energy conservation over 200 radial periods is better than one part in 105, justifying the inter-
polation scheme adopted. In total 20� 10� 7= 1400 orbits are integrated, resulting in a library
of 2� 1400 = 2800 orbits (when doubling for the �Lz orbits).

During the integration of each orbit we project its phase–space coordinates onto the space
of observables (x0; y0; vlos), where (x0; y0) is the plane on the sky, and vlos is the line–of–sight
velocity. In the following we use v as shorthand for vlos. We adopt a three–dimensional grid
in the (x0; y0; v)–space, i.e., our storage cube, in which we record the fractional time the orbit
spends in each of the cells (see chapter 2 for details). Once the orbit integration is finished, we
convolve each of the velocity slices (x0; y0) with the PSF appropriate for the observations. Since
we have kinematic constraints obtained with three different instrumental setups and different
PSFs (WHT major axis, WHT minor axis, and FOS apertures) we use three separate (x0; y0; v)–
storage cubes each of which is convolved with the respective PSF. We use two cubes with 0:100�
0:100 (x0; y0)–cells for the WHT major and minor axes. For the FOS cube, 0:0500 � 0:0500 cells are
used to comply with the higher spatial resolution of the HST. For all storage cubes we use 101
velocity bins of 30 km s�1. The final step is to calculate the contribution of the orbit to each of
the positions in the plane of the sky where we have photometric and/or kinematic constraints.
These positions are in general extended areas (e.g., determined by the pixel size of the CCD, the
slit width and the pixel rebinning used to obtain spectra of sufficient S=N). For each constraint
position l = 1; :::;Nc we therefore sum the fractional times over the area of l (see chapter 2 for
details). This gives us in the end, for each orbit k and each constraint position l, the properly
PSF–convolved velocity profile ‘histogram’ VPk

l;v, integrated over the area of position l. By using
fractional times we ensure that each orbit is normalized to unity.

5.4.3 The observational constraints

The final step of the orbit–superposition method is to find the set of non–negative weights, 
k,
of each orbit that best matches the kinematic constraints and reproduces the luminous mass
density of the model. Since we normalize each orbit to unity, the orbital weights 
k measure
the fraction of the total light of the galaxy that resides on orbit k. We use the following sets of
constraints:

The solution 
 has to reproduce the luminosity density �(R; z)=ϒ (equation [5.4]). We have
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subdivided the first quadrant of the meridional plane in 20 � 5 (r; �)–cells, with r and � the
standard spherical coordinates. The grid that encompasses those cells is binned linearly in�, and logarithmically in r between 0:0100 and 6000. For each orbit k we store the fractional
time tk

n spent in cell n. Since we integrate the orbits in the meridional plane, this is similar to
the fractional time the orbit spends in the three–dimensional volume obtained by integrating
the area of the cell over 2� radians in the �–direction. Therefore we have computed the total
luminosity, Ln, of the MGE model inside each volume n. We will refer to these constraints as
the ’self–consistency constraints’.

From the WHT spectra we obtained sets of (Vl; �l; h3;l; h4;l) at 19 positions l along the major
axis, and 8 along the minor axis. The quantities are the luminosity weighted averages over the
areas of constraint positions l = 1; :::; 27. For each of these 27 positions we have calculated the
surface brightness Sl integrated over that area, and convolved with the appropriate PSF. The
quantities Sl, Vl, �l, h3;l and h4;l parameterize the velocity profiles L obs

l (v) with

Sl = Z 1�1 L obs
l (v)dv: (5.14)

One can rewrite this parameterization in the form (Sl; Slh1;l ; Slh2;l ; Slh3;l ; Slh4;l), with

Slhm;l = 2
p� Z 1�1 L obs

l (v)�(wl)Hm(wl)dv; (5.15)

where m = 1; :::; 4, � is again the standard Gaussian (see equation [5.3]), and

wl = v�Vl�l
; (5.16)

with Vl and �l the measured rotation velocity and velocity dispersion of the VP’s best–fitting
Gaussian at constraint position l. Note that with this definition, h1;l and h2;l are zero for all con-
straint positions. This parameterization has the advantage that the orbit–superposition problem
for the orbit weights is linear (see chapter 2).

In addition, we obtained (Vl; �l) at 7 FOS aperture positions. Again we have calculated, for
each of these positions l, the PSF–convolved, aperture–integrated surface brightness Sl. The
PSF used and the aperture diameter adopted are described in BJM98. As for the WHT spectra,
we use the parameterization (Sl, Slhm;l with m = 1; 2) as constraints rather than (Sl;Vl; �l).

In total we thus have 100 self–consistency constraints Ln, 34 constraints on projected surface
brightness Sl, and 122 kinematic constraints Slhm;l.
5.4.4 Non–negative least squares fitting

At each constraint position l we have a measured velocity profile L obs
l (v), which we parameter-

ized by (Sl; Slhm;l). For each of the observational constraints, we have the measurement errors
∆Sl;∆Vl;∆�l;∆h3;l and ∆h4;l from which we can calculate the errors ∆(Slhm;l). As described in

Section 5.4.2 we determined, for each orbit k and each position l, the velocity profile VPk
l;v at ve-

locity v. We parameterize each orbital VP by (Sk
l ; Sk

l hk
m;l) with m = 1; :::; 4 using equations (5.14)

and (5.15) and with L obs
l (v) replaced by VPk

l;v, and by changing the integration to a summation
over all velocity bins. The orbit weights 
k (k = 1; :::;Norbits) that result in the best fit to the
observations can be determined by minimizing�2

obs =∑
l

 
Sl �∑k 
kSk

l

∆Sl

!2+ 4

∑
m=1

∑
l

 
Slhm;l �∑k 
kSk

l hk
m;l

∆(Slhm;l) !2: (5.17)
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In addition to minimizing �2
obs, we also want the solution to match the luminosity density in

the meridional plane, i.e., we also want to minimize�2
sc =∑

n

 
Ln �∑k 
ktk

n

∆Ln

!2; (5.18)

where ∆Ln sets the accuracy for reproducing the luminosity density in the meridional plane.
Throughout, we set ∆Sl = 0:01Sl and ∆Ll = 0:01Ll, such that we aim for an accuracy of one per
cent in reproducing both the projected PSF–convolved surface brightness and the luminosity
density in the meridional plane. It is in principle sufficient to fit only the luminous density in
the meridional plane: the surface brightness should be fitted automatically. However, because
of discretization this is in practice not necessarily so, and we thus include the surface brightness
at the constraint positions l as separate constraints.

Minimizing �2 � �2
obs + �2

sc is a least–squares problem for a matrix equation (see chapter
2 for a detailed description of the matrices involved). It has to be solved under the physical
constraint that 
k � 0. Following Pfenniger (1984), we use the Non–Negative Least Squares
(NNLS) algorithm by Lawson & Hanson (1974) to solve for the orbit weights (see also chapters
2, 3 and 4).

5.4.5 Regularization

The NNLS matrix equation solved is numerically rather ‘ill–conditioned’ giving rise to a dis-
tribution function with strong oscillatory behavior. Such DFs are unphysical (e.g., Lynden–Bell
1967; Spergel & Hernquist 1992; Merritt 1993). Smoothing in the solution space can be achieved
via regularization (e.g., Merritt 1996 and references therein). We follow the scheme used by
Zhao (1996), which is based on a minimization, up to a certain degree, of the differences in
weights between neighboring orbits. The technique is described in chapters 2 and 3, and we
refer the interested reader to those papers for details. The extra regularization constraints result
in a less good fit to the data. The amount of smoothing is set such that the regularized model is
still compatible with the data in a statistical sense, i.e., such that ∆�2 = �2��2

min = 1, with �2
min

the value obtained without regularization. Unless mentioned otherwise, we discuss results in
which no regularization has been adopted.

5.5 Shortcoming of the Gauss–Hermite parameterization

Although the modeling technique outlined in the previous sections works well for dynamically
hot galaxies (e.g., M32, see chapter 4), some problems arise when trying to apply it to dynami-
cally cold systems (such as NGC 4342) because we do not include the zeroth–order moment h0

in the fit. This quantity measures the normalization of the best–fitting Gaussian to the normal-
ized VP and is observationally inaccessible: it is directly proportional to the unknown difference
in line strength between the galaxy spectrum and the template spectrum used to analyze. (In
practice one uses the assumption h0 = 1 to estimate the line strength from the observations.)
As we now show, excluding h0 from the GH series and expanding the orbital VPs around the
observed VPs up to fourth order only, can lead to artificial counter–rotation in models of cold
systems.

Assume we have an observed velocity profile VPobs, at a certain position on the sky, that is
perfectly Gaussian. The GH moments hm with m > 0 of such a VPobs will all be zero. In the
method described above, we derive the orbital hk

m (m = 1; :::; 4) from equation (5.15) in which
the observed V and � enter in the weighting function �(w)Hm(w). In the NNLS algorithm we
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FIGURE 5.5— The Gauss–Hermite moments hm (m = 0;1;2) of a Gaussian VP expanded around another Gaussian
with the same dispersion�. Results are plotted as functions of the velocity difference ∆V between the two Gaussians,
expressed in units of �. For ∆V = 0, the two Gaussians are identical and h0 = 1 and hm = 0 (m = 1;2;3; :::).
solve for the orbit weights by minimizing the difference between the GH moments of VPobs and
VPorb. In principle, the differences between the Slhm;l and ∑k 
kSk

l hk
m;l are minimized, but for

simplicity we illustrate the problem with a one–orbit model.

In the ideal case, an orbit whose VP deviates more strongly from the observed VP will be
assigned a smaller weight. However, this is not always the case with the VP parameterization
described in Section 5.4.3. To illustrate this we calculated the GH moments hm (m = 0; :::; 2) of
a Gaussian expanded around another Gaussian, both with the same dispersion �. In Figure 5.5
we plot the resulting moments hm as function of the velocity difference ∆V between the two
Gaussians (in units of �). For ∆V = 0, h0 = 1 and all higher–order moments are zero (i.e., the
two Gaussians are identical). In the regime j∆Vj=� <� 2 the higher–order moments increase with
increasing velocity difference. For larger values of j∆Vj=� they start to decrease again to reach
approximately zero for j∆Vj=� >� 5. On the contrary, h0 equals unity when the VPs are identical,
and decreases monotonically for increasing j∆Vj=�.

In NGC 4342, which is a dynamically cold system, the major axis kinematics reach Vobs=�obs> 2:5 at the outside (see Figure 5.6). An orbital VP with approximately the same V and � as an
observed VP with V=� > 2:5 will have its h1 and h2 close to zero. Consequently, it will likely be
given a non–zero weight. The same orbit, but with opposite sense of rotation (i.e., with reversed
vertical angular momentum), will also have h1 and h2 close to zero, since j∆Vj=� > 5. In other
words, the +Lz and �Lz orbits have the same S, h1 and h2 and are therefore indistinguishable
for the fitting algorithm. The+Lz and �Lz orbits have opposite values of h3, but if jh3j is small,
the difference between the two orbits, in terms of the VP parameterization used, remains small.
If it would have been possible to include h0 in the fit, then the +Lz would have h0 close to
unity, and the�Lz orbit would have h0 � 0 (see Figure 5.5): the two VPs would have been easily
distinguishable. In addition, if the observational data had been of sufficient S=N to derive GH
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FIGURE 5.6— The ratio V=� as function of radius of the major axis kinematics of NGC 4342 as measured with the
WHT (solid dots) and the HST/FOS (open circles). The dotted line indicates Rlim outside which V=� > 1:5. In the
modified approach, we exclude counter–rotating orbits with circular radii Rc > Rlim from the NNLS fit.

moments up to very high order, it would also have been possible to distinguish the VPs of the+Lz and �Lz orbits. In practice, however, one requires unrealistic high S=N spectra to be able
to measure these moments.

We can thus expect that our solutions will have significant amounts of counter–rotation at
radii where Vobs=�obs

>� 2. We indeed found solutions in which the reconstructed VPs at large
radii along the major axis have two peaks at positive and negative vlos (see Section 5.6.1). In
chapter 4, we applied the same modeling technique to the dynamically hot system M32, which
has V=� < 1:0 everywhere, and therefore did not encounter this problem.

To solve the problem outlined above, we use a ‘modified approach’ in which we add some
extra constraints to the models: we exclude counter–rotating orbits whose circular radius Rc is
larger than a limiting radius Rlim. We have chosen Rlim = 4:500, since for larger radii Vobs=�obs >
1:5 (see Figure 5.6) and the VP parameterization used becomes poor in the light of the prob-
lem discussed above. As we show in Section 5.6.1, this solves the problem of the artificial
counter–rotation at large radii along the major axis, but it has the disadvantage that our models
are not fully general any more: we have imposed some a priori constraints on the amount of
counter–rotating orbits in NGC 4342. On the other hand, the actual observations do not reveal
any counter rotation at large radii. Critically, one may argue that the VP analysis of the spec-
tra is not suitable to detect such counter rotation, since we do not go to sufficient high order
in the GH expansion. We have therefore also analyzed our spectra with the unresolved Gaus-
sian decomposition (UGD) method (Kuijken & Merrifield 1993), which is not hampered by this
limitation (e.g., Merrifield & Kuijken 1994), and found good agreement with the results of the
GH parameterization. This suggests that indeed NGC 4342 has a negligible amount of counter–
rotating stars in its outer disk. The additional constraint imposed on the models, when using
the modified approach, is thus justified observationally.



5.6 Results and discussion 119

5.6 Results and discussion

5.6.1 The black hole and mass–to–light ratio

Based on the BH mass and mass–to–light ratio suggested by the Jeans modeling (Section 5.3.1)
we construct three–integral models with MBH=ϒI in the range 0� 1:5� 108 M� and 4 � ϒI � 9.
For each value of MBH=ϒI only one orbit library has to be constructed: a change in mass–to–
light ratio is equivalent to a scaling of the model velocities proportional to

p
ϒ . We therefore

calculate 10 different orbit libraries, all with ϒI = 1, that differ only in the mass of the central
BH. If one scales to another value of ϒI , the mass of the BH changes accordingly to ϒI MBH. We
sample the mass–to–light ratio at 16 different values in the interval ϒI 2 [4; 9].

For each of the in total 160 different (MBH;ϒI)–models we minimize �2 = �2
obs + �2

sc (equa-
tions [5.17] and [5.18]). We use �2 statistics to compare different (MBH;ϒI)–models in a proper
statistical way. We determine the measure ∆�2 � �2��2

min, where �2
min is the overall lowest �2.

Under the assumptions that the errors are normally distributed and that there are no numerical
errors in the model, one can assign confidence levels to the measure ∆�2. The exact level of
confidence depends on the number of degrees of freedom in the models (Press et al. 1992), in
our case two: MBH and ϒI .

The resulting �2–plots are shown in Figure 5.7. The first three contours show the formal
68:3, 95:4 and 99:73 per cent confidence levels (the latter one is plotted with a thick contour).
The solid dots correspond to actual model calculations. Bi–cubic spline interpolation is used
to calculate �2 at intermediate points. Four different plots are shown, labeled a to d. Plot a
(upper left panel) shows the �2 plot of the fits, when using only the V and � measurements
of the WHT spectra as kinematic constraints. Clearly, a large range of parameter space gives
equally good fits. There is at best only a marginal indication that models with a BH fit the
ground–based rotation velocities and velocity dispersions better than without a BH. There is a
clear correlation between MBH and ϒI for the best fitting models, which is a reflection of the
virial theorem; an increase of MBH requires a decrease of ϒI . Plot b (upper right panel) is similar
to plot a, except that we have now included the h3 and h4 measurements of the WHT spectra
as constraints on the models. Two changes are evident. First, the allowed range of ϒI at given
BH mass is much smaller. Secondly, BHs more massive than � 6� 108 M� can be ruled out at
the 99:73 per cent confidence level. Plot c (lower left panel) shows the resulting �2–plot when
all constraints, including the HST measurements are taken into account. These high spatial–
resolution measurements allow us to rule out models without a BH at a confidence level better
than 99:73 per cent. Finally, in plot d (lower right panel) we show the results when using the
modified approach on the entire set of constraints. As can be seen, the exclusion of counter–
rotating orbits with circular radii beyond 4:500 puts some further limits on the allowed range of
acceptable models, consequently contracting slightly the 99:73 per cent confidence region.

Although the solutions we find with the standard approach can result in models with sig-
nificant counter–rotation (see Section 5.5), one can still meaningfully use the �2 statistics to put
confidence levels on MBH and ϒI . The main requirement is that orbital VPs and observed VPs
are parameterized in exactly the same way, which is the case. The counter rotation that we
find is simply a consequence of our particular VP parameterization. Although the modified ap-
proach results in a more strict solution space, and in principle is based on additional constraints
that are observationally justified, we will nevertheless consider the �2 surface of Figure 5.7c
as the main result. We merely present the results of the modified approach to show that the
counter–rotation in the best–fitting models has no significant influence on the BH mass and
mass–to–light ratio of our best–fitting model. Furthermore, Figure 5.7c results in more conser-
vative estimates of the errors on BH mass and mass–to–light ratio.
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FIGURE 5.7— Contour plots of �2 = �2
obs+ �2

sc, which measures the goodness–of–fit to the constraints as function
of BH mass, MBH, and I–band mass–to–light ratio, ϒI . The first three contours define the formal 68:3, 95:4 and 99:73
per cent confidence levels (latter one is plotted with a thick contour). The subsequent contours are characterized by
a factor two increase in ∆�2. Solid dots indicate actual model calculations. Only ten different orbit libraries have
been calculated, all with ϒ = 1:0. Models with different mass–to–light ratios are computed from these models by
scaling as described in Section 5.6.1. This explains the inclined streams of points. No models are computed in the
lower right corner of each panel. The �2 surface of panel a results from excluding h3 and h4 as well as all HST/FOS
measurements from the constraints. In panel b we have only excluded the HST/FOS data, and panel c shows the
resulting �2 plot when all constraints are taken into account. The asterisks labeled A, B and C indicate special models
discussed in the text. Finally, in panel d we have used the modified approach and included the additional constraint
that counter–rotating orbits with Rc > 4:500 are not allowed in the solution.

The labeled asterisks in panel c indicate three models that will be discussed in more detail
below. Model B provides the best overall fit and has MBH = 3:6� 108 M� and ϒI = 6:25 M�=L�.
From the �2 statistics we derive MBH = 3:0+1:7�1:0 � 108 M� and ϒI = 6:3+0:5�0:4 M�= L�. The errors
are the formal 68.3 per cent confidence levels. For comparison, the modified approach yields
MBH = 3:0+0:9�0:8 � 108 M� and ϒI = 6:5+0:3�0:3 M�= L�, which is consistent with and slightly more
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strict than the results obtained with the standard method.
It is important to realize that the WHT data at the larger radii are essential for the limits we

can put on the BH mass. If we exclude kinematic data outside 800, the model is less constrained
and we find MBH = 4:7+1:5�1:7 � 108 M� and ϒI = 5:6+0:5�0:3 M�= L�. At 99:73 per cent confidence

level, one can now only rule out BHs more massive than � 8� 108 M�. Evidently, data at large
radii helps in constraining the mass of the BH, despite the fact that the radius of influence of the
BH is limited to <� 100. The reason for this counterintuitive aspect is twofold. First of all, the data
at large radii are particularly useful in constraining the system’s mass–to–light ratio. Because of
the virial theorem, which imposes a correlation between MBH and ϒ , this helps in constraining
the BH mass. Secondly, any orbit that contributes at large radii also contributes to the observed
velocity profiles at the center because of the projection on the sky. This is especially important
for an edge–on galaxy like NGC 4342. By including outer data points, one not only constrains
the dynamics of the system at the outer parts, but in addition one limits the amount of freedom
for the more central orbits (which contain information on the BH mass), because of the way the
outer orbits contribute to the central VPs.

In chapter 4, we used the same three–integral modeling technique and statistical means to
infer that M32 harbors a massive BH of (3:4� 0:7)� 106 M�. To facilitate direct comparison,
the �2 surfaces presented here are plotted with the same contour levels as in chapter 4. The�2 contours of Figure 5.7 correspond to the goodness–of–fit to all constraints. In chapter 4,
we plotted contours of �2 of the fit to the kinematic constraints only (i.e., the right term in
equation [5.17]), but we noted that contour plots of the total �2 look similar. Here, we have
computed the surfaces of the �2 that only measures the fit to the kinematic constraints and
found very similar contours: all models can fit the surface brightness and luminosity density to
better than one per cent as requested.

In order to compare the kinematical predictions of the models with the actual observations,
we compute the velocity profile of the model at each constraint position l, VPl;v, as the weighted

sum of all VPk
l;v, using the solution 
 for the orbit weights. For these VPs we then compute Vl

and �l of the best–fitting Gaussian, as well as Sl and the GH moments h3;l and h4;l, all of which
can be directly compared to the observations. The kinematical predictions of models A, B and
C are plotted in Figure 5.8 together with the observations. Although we did not measure the h3

and h4 coefficients for the FOS spectra, we plot the model predictions for these quantities. All
three models provide equally good fits to the projected surface brightness and the meridional
luminosity density (not plotted). The main difference between models A and B is their fit to the
central HST velocity dispersion. The model without BH (model A) underpredicts the observed
dispersion by � 130 km s�1 (� 4:0∆�). The rapid central rotation in NGC 4342, as measured
with the FOS is remarkably well fit even without central BH. The main noticeable difference
between models B and C is their fit to the central WHT velocity dispersion along the minor
axis, and the fit to the h3 measurements along the major axis. Although model C fits the central
HST velocity dispersion even better than model B, the fit to the higher–order GH coefficients is
worse to such an extent that this model can be ruled out to better than 99.73 per cent confidence
(cf. panels a and b of Figure 5.7).

A cautious reader may be surprised that Models A and C, plotted in Figure 5.8, can be ruled
out with high confidence despite the fact that their fits to the actual data look almost indis-
tinguishable from that of Model B. This apparent discrepancy arises because �2–by–eye is not
a good way to just statistical significance. In total we use 122 kinematic constraints plus 134
constraints on the density distribution (both intrinsic and projected). With so many points, and
with errorbars that are sometimes hardly visible in Figure 5.8 (e.g., for the major axis WHT ro-
tation velocities), it becomes infeasible to assess significance levels by merely looking at the fits.
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FIGURE 5.8— Kinematics for the three data sets (solid dots with errorbars) compared to the predictions for models
A (dotted lines), B (solid lines) and C (dashed lines). Although we did not measure h3 and h4 from our HST/FOS
spectra, we plot the model predictions in the lower two panels on the right. Model A, which has no BH, strongly
underestimates the central velocity dispersion as measured with the FOS. The strong deviation of the predictions of
model C for the outermost WHT point along the major axis, is due to the ‘artificial’ counter–rotation of the model
(see Figure 5.10). As explained in the text, these deviations do not influence our �2 statistics (cf. panels c and d of
Figure 5.7).

In order to exemplify this, we have calculated the cumulative �2, as function of constraint num-
ber, for models A, B, and C. The results are shown in Figure 5.9. The constraints are organized
as follows: constraints 1 to 19 correspond to the projected surface brightness Sl of the WHT data
points along the major axis, constraints 20 to 27 to those of the WHT minor axis, and constraints
28 to 34 to those of the HST data points. The next 34 constraints correspond to Slh1;l, etcetera,
up to Slh4;l. Constraints 171 to 270, finally, correspond to the self–consistency constraints, Ln,
of the meridional density. Note that here we have included the undetermined Slh3;l and Slh4;l
of the HST data, which add zero to the cumulative �2. It is evident from Figure 5.9 that mod-
els A and C fit the data significantly worse than model B, something not immediately evident
from Figure 5.8. A comparison of models B and C shows that there is not a particular point that
dominates the ∆�2 between these two models, but rather that ∆�2 accumulates slowly over all
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FIGURE 5.9— The cumulative �2 as function of constraint number for models A (dashed line), B (solid line), and
C (dotted line). The constraints are ordered as follows: constraints 1 to 19 correspond to the projected surface
brightness Sl of the WHT data points along the major axis, constraints 20 to 27 to those of the WHT minor axis, and
constraints 28 to 34 to those of the HST data points. The next 34 constraints correspond to Slh1;l , etcetera, up to Slh4;l .
Constraints 171 to 270, finally, correspond to the self–consistency constraints, Ln, of the meridional density. Note
that none of the models accumulates a significant contribution to their total �2 from the self–consistency constraints;
they all fit the meridional density to a high degree of accuracy. Furthermore, it is evident that models A and C
accumulate a significant larger �2 than model B, and they do so slowly over all constraints. This explains why a
simple �2–by–eye assessment of Figure 5.8 seems to be inconsistent with the high levels of confidence we find for
excluding models A and C in favor of model B.

points. The ∆�2 between models A and B is clearly dominated by a single point (the central
HST velocity dispersion), but again the remainder of the total ∆�2 slowly accumulates over all
points. Note finally that the self–consistency constraints do not add significantly to �2 for any
of the models; all models fit the meridional density to a high degree of accuracy.

The large differences between the predictions of model C at the outermost point along the
major axis (WHT measurements) and the actual observed values is due to the problem with
the counter–rotation. This is illustrated in Figure 5.10, where we plot VPs at four different
radii along the major axis. Solid dots represent the ‘observed’ velocity profiles, reconstructed
from the measured GH–parameters (assuming that all GH coefficients of order five and higher
are zero). The solid lines represent the reconstructed VPs of model C, and the dashed lines
correspond to the Gauss–Hermite series fitted to these model VPs. The upper four panels show
the VPs of model C. The lower panels show the VPs for a model with the same BH mass and
mass–to–light ratio as model C, but for which the modified approach is used. For R = 0:000
and R = 4:8300 the model VPs of the two different approaches are almost identical. However,
for the larger radii, the VPs of model C clearly reveal large amounts of counter rotation. The
VP of the upper right panel has such a large counter–rotating component, that the best–fitting
Gaussian no longer corresponds to the peak at positive velocities: it is very broad and centered
around V � 0 km s�1. This causes the large difference between the model predictions and the
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FIGURE 5.10— Velocity profiles at four different radii along the major axis of NGC 4342. The observed VPs,
reconstructed from the measured V, �, h3 and h4 while assuming hm = 0 for m � 5, are plotted as solid dots. The
solid lines correspond to the model VPs, and the dashed lines to the Gauss–Hermite series (up to order 4) fitted to
these model VPs. Upper panels correspond to model C, whereas lower panels correspond to a model with the same
BH mass and mass–to–light ratio, but whose orbit solution was computed with the modified approach. The upper
panels clearly reveal that the model VPs at larger radii are double peaked. This can yield strange Gaussian fits, as
evident from the upper right panel. The modified approach excludes counter–rotating orbits with Rc > 4:500 from
the orbit library, and does not reveal these double peaked VPs.

observed values at the outermost WHT point in Figure 5.8. Although the reconstructed V and� may differ strongly from the observed values, the h1 and h2 values are very similar. Since
these are the values that enter into the computation of �2, this discrepancy does not affect the�2 statistics.

It is interesting that the central velocity dispersions, as measured with the WHT, can be
fit without the requirement of a central BH. This contradicts the conclusions reached from the
Jeans modeling, which suggests, on the basis of the WHT measurements alone, that a BH of� 3 � 108 M� is required. The three–integral modeling, however, shows that only the HST
measurements are of sufficient spatial resolution to discriminate strongly between models with
and without a massive BH (cf. panels b and c of Figure 5.7). Clearly, without these high spatial
resolution kinematics, the case for a BH is only marginal: the �2 plot in panel b of Figure 5.7
suggests a BH mass of� 2:0� 108 M�, but cannot rule out models without a BH to a significant
confidence level.

5.6.2 Alternatives to a black hole

A dense cluster

Although the dynamical evidence for the presence of a MDO of a few 108 M� in NGC 4342 is
compelling, it does not automatically imply evidence for a BH. Alternatives to a point mass,
such as a cluster of brown dwarfs or stellar remnants are not ruled out by the modeling pre-
sented above. Any of these alternatives is only viable if its lifetime is not significantly smaller
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FIGURE 5.11— The value of �2 = �2
obs + �2

sc, which measures the goodness–of–fit to the constraints, as function
of the scale length � (in arcsec) of the Plummer potential with a total mass of 3:6� 108 M� representing a cluster of
dark objects in the center of NGC 4342. All models have a stellar mass–to–light ratio of 6:25. The best fit to the data
is achieved in the limit �! 0, which corresponds to our model with a BH rather than a dark cluster. We can rule out
models with � > 0:0700 at the 99.73 per cent confidence level.

than the age of the galaxy (typically � 10 Gyr). There are three main processes that determine
the evolution of a dense cluster: (i) core collapse, (ii) evaporation due to weak gravitational scat-
tering, and (iii) physical collisions between the objects comprising the cluster. The latter of these
processes is likely to ultimately lead to the formation of a single dense object, probably a mas-
sive BH. After a timescale �coll, each object has physically collided with another (in a statistical
sense). �coll strongly depends on the mass and density of the cluster, as well as on the mass and
size of the constituents (see Maoz 1997 and references therein). The characteristic timescale for
evaporation of a cluster which consists of equal mass constituents is �evap � 300 �relax (Spitzer
& Thuan 1972), whereas typically after �cc � 16�relax, a Plummer sphere of equal mass objects
undergoes core collapse (Cohn 1980). Here �relax is the median relaxation time (see Spitzer &
Hart 1971). By choosing a Plummer model for the dark cluster we are conservative, in that more
concentrated clusters have shorter collapse times, and are thus less likely as alternatives for a
massive BH.

In order to constrain the size of a dark cluster, we construct models in which we replace
the point–mass potential of the BH by a Plummer potential with a scale length �. We consider
model B for which we replace the 3:6 � 108 M� BH by a Plummer potential with the same
mass, but with different values of �. The stellar mass–to–light ratio is kept constant at 6.25.
Figure 5.11 shows the resulting �2 as function of �. The best fit is obtained for �= 0:0 (model B),
and the fit deteriorates with increasing scalelength of the Plummer potential. The dotted line
indicates the formal 99.73 per cent confidence level, and at this level of confidence we can rule
out dark clusters with � > 0:0700. This upper limit on the scale length of the Plummer sphere
corresponds to 5.1 pc at the assumed distance of 15 Mpc, implying a central density of the
cluster > 6:7� 105 M�pc�3.

We calculate the relaxation timescale �relax, and the collision timescale �coll in which we adopt
the mass–radius relation for non–collapsed objects used by Goodman & Lee (1989). In Figure 5.12
we plot the characteristic timescales for core–collapse and collisional destruction of our dark
cluster, as function of the mass m of the cluster’s constituents. As can be seen, the timescales for
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FIGURE 5.12— The timescales for core collapse (�cc) and collisional destruction (�coll) of a 3:6� 108 M� Plummer
cluster of non–collapsed objects with a central density of 6:7� 105 M�pc�3 as function of the mass m of the con-
stituents. If any of these timescales is less than � 1010 years, it makes such cluster an unlikely alternative to a BH.
Unfortunately, current data does not allow us to rule out any of the dark clusters as an alternative MDO in NGC 4342.

core collapse (�cc � 7� 1011(m= M�)�1 yr) and evaporation (�evap � 20�cc) for the inferred dark
cluster in NGC 4342 exceed the Hubble time for m <� few M�, and neither of these processes
thus allows us to rule out a dark cluster as an alternative to a BH. The collision timescale �coll

is the most restricting, and we are close to being able to rule out dark clusters of non–collapsed
objects with masses less than � 0:001 M�. However, for clusters of brown dwarfs with masses
of � 0:08 M�, �coll is still of the order of 1012 yr, and such clusters can clearly not be ruled
out by current observations. Clusters of collapsed stellar remnants, such as white dwarfs or
neutron stars, have collision timescales that are even much larger than the value of �coll plotted
in Figure 5.12. This is due to the much smaller collisional cross–sections of these collapsed
objects. In fact, the collapse time for a dark cluster can be made arbitrarily long by giving its
objects an arbitrarily small mass, and the problems with collisions and mergers can be avoided
by assuming the cluster to be a collisionless gas of elementary particles. However, another
effect might allow one to rule out such a dark cluster: the trapping of stars by the cluster due to
dynamical friction. If the time scale for this process is smaller than the age of the galaxy, enough
stars will get trapped such that the cluster can no longer be considered dark. Alternatively, these
trapped stars can merge and form a massive BH, thus spoiling the goal for which the cluster
was introduced. The time scale for the trapping to occur is independent of the mass m of the
cluster constituents, but does depend on the mass m� of the stars being captured, and is given by
(m=m�)�cc (as long as m�� m, see Quinlan 1996). For NGC 4342 we thus find that this capture
time scale is only smaller than � 1010 yr for stars with m� >� 70 M�. We can thus not use this
trapping mechanism to put an appreciable constraint on the nature of a possible dark cluster in
NGC 4342.

In conclusion, it is clear that we are still a long way from being able to rule out dark clusters
as viable alternatives for a massive BH in the center of NGC 4342.

An end–on bar

It has been argued that a bar observed end–on may mimic the presence of a BH (Gerhard 1988).
In particular, the nuclear disk in NGC 4342 may in fact be a (very thin) nuclear bar. However,
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there are several reasons why this interpretation is unlikely. First of all, axisymmetric mod-
els without BH fail to fit the central velocity dispersion, as measured with the HST/FOS, by� 130 km s�1. It seems unlikely that the elongated orbits in a bar potential can fix this. Further-
more, there are no indications that (the center of) NGC 4342 is triaxial. Although van den Bosch
& Emsellem (1998) have provided evidence that NGC 4570, a galaxy with a double disk mor-
phology similar to NGC 4342, has been shaped under the influence of a rapidly tumbling bar
potential, none of the characteristics found in NGC 4570 that led to this conclusion are apparent
in NGC 4342. In addition, no minor axis rotation is found, and the small amount of isophote
twist observed (see BJM98) is limited to the outer region of the galaxy, and is more likely to be
associated with a small warping of the outer disk, probably induced by the small companion
at � 3000 SE. In the end–on bar hypothesis, there has to be a preferred orientation of NGC 4342
with respect to our line–of–sight, something clearly not in favor of this model. Finally, the steep
cusp of the bulge of NGC 4342 makes the bar hypothesis unlikely, since the pressure support
from this strongly cusped bulge probably assures stability against bar formation; the steep rota-
tion curve implies the presence of an inner Lindblad resonance, which is effective in inhibiting
the formation of a bar (e.g., Toomre 1981; Sellwood 1989; van den Bosch & de Zeeuw 1996).

Although none of these arguments by themselves are very convincing, and we can thus not
exclude this possibility with a high degree of confidence, we consider an end–on nuclear bar in
NGC 4342 unlikely given the various arguments listed above.

5.6.3 The dynamical structure of NGC 4342

During the orbit integrations we store, in addition to the fractional time spent by orbit k in
meridional cell n, tk

n, the time–weighted first and second order velocity moments averaged over
cell n. With the solution for the orbit weights 
 we can compute the internal dynamical structure
of the model averaged over each cell n. These are given byhvain = ∑k 
k tk

n hvaik
n
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Here we use the subscript a to indicate either of the cylindrical coordinates R, � or z. The
cell–averaged velocity dispersions can be computed according to h�ai2n = hv2

ain � hvai2n.
In order to suppress noise, we average hvain and hv2

ain over cells n that have the same radius
r but different � (r and � being the standard spherical coordinates). Given the strongly flattened
shape of NGC 4342 and its multi–component structure, we decided to split the galaxy in two
parts: we determine the internal dynamical structure in two cones; one with half–opening angle
of 30o centered around the equatorial plane, including the nuclear and outer disks, and the other
one with half–opening angle of 60o centered around the minor axis, representing the bulge of
NGC 4342.

We investigate the dynamical structure of models A, B, and C using the modified approach
(see Section 5.5) and regularization as described in Section 5.4.5 in order to suppress noise. As
a check, we compare the dynamical structures before and after regularization (with the amount
of smoothing chosen such that ∆�2 = 1). The regularized model is found to have a smoother
dynamical structure, but the main features are similar for both cases indicating that our results
are not too sensitive to the particular method and amount of regularization adopted.

In Figure 5.13 we plot the dynamics in the ‘equatorial cone’ as function of radius. The upper
panels show the rms velocities for models A, B and C in the range between r= 0:100 and r = 1200
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FIGURE 5.13— Dynamical structure of models A, B and C averaged over a cone with half–opening angle of 30o

centered on the equatorial plane. Upper panels show the rms velocities hv2
ai1=2 in km s�1 , middle panel the nor-

malized velocity dispersions �a=�total, and lower panels the ratios �a=�R. Solid curves are for the radial compo-
nent (a = R), dotted curves for the azimuthal component (a = �), and dashed curves for the vertical component
(a = z). Results are plotted over the radial interval where we have kinematic constraints along the major axis, i.e.,
0:100 < R < 1200 .
(corresponding to the regime where we have kinematic constraints along the major axis). The
middle panels display the ratio �a=�total for the same radial interval (�2

total = ∑a �2
a ). Since there

is no streaming motion in the radial and vertical directions, h�Ri and h�zi are equal to their
respective rms velocities. The difference between hv2�i and �� reflects the streaming motion

of the model. The lower panels show the ratios �z=�R and ��=�R. The three models differ
predominantly in the inner � 3:000, reflecting the differences in BH mass, but are very similar
outside of 3:000: clearly hv2�i dominates the dynamics outside this radius in accordance with the
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rapid rotation of the outer disk. The rapid change in dynamical structure (from azimuthally
anisotropic to radially anisotropic) going from 300 to 1200 reflects the strong increase of (V=�)obs

over this radial interval (see Figure 5.6): the dynamically cold outer disk, mainly built up of
close–to–circular orbits with low ��, becomes the dominant mass component. Over the same
radial interval, the projected ellipticity increases from � 0:4 to � 0:7, and this thus explains the
observed correlation between ellipticity and Vobs=Vmod of the best fitting isotropic Jeans model
plotted in Figure 5.4. At R >� 800, ��=�R � 0:75, not too different from the value in the solar
neighborhood where ��=�R = 0:6 (Dehnen 1998).

Models B and C have �z=�R remarkably constant at � 0:9, and are thus not too different
from two–integral models (for which this ratio is exactly 1.0). This is very different from the case
without BH (model A) for which �z=�R is a strong function of radius R. This is the reason that
the two–integral, isotropic Jeans model discussed in Section 5.3, could not fit the HST rotation
velocities without BH, whereas model A can.

The main change going from model A to model C, is a strong increase of ��=�R in the
inner � 300. In these inner regions the circular velocities increase strongly with increasing BH
mass. Nevertheless, all three models provide an almost equally good fit to the observed rotation
velocities. We checked our solutions and found that going from model A to C, the ratio of�Lz–orbits over +Lz–orbits increases in the radial interval 0:500 < R < 3:000. This causes the
net streaming motions of all three models to be roughly similar despite the large differences in
circular velocities. Furthermore, it explains the strong increase in �� observed when going from
model A to model C.

The increase of azimuthal anisotropy (at around one arcsec) with increasing BH mass is,
at least qualitatively, in agreement with predictions for the velocity anisotropy resulting from
the adiabatic growth of a BH (Goodman & Binney 1984; Quinlan, Hernquist & Sigurdsson 1995;
Sigurdsson, Hernquist & Quinlan 1995; Merritt & Quinlan 1998). In all of these studies, the mass
distribution was taken to be spherical, or, in the case of Merritt & Quinlan, became spherical due
to the BH growth. Because of the presence of the rapidly rotating nuclear disk in NGC 4342,
it however remains unclear whether a comparison of our results with those of the adiabatic
BH growth models has any direct relevance, i.e., the central region of NGC 4342 is far from
spherical.

The dynamics of the bulge (represented by the cone with half–opening angle of 60o centered
around the minor axis) is shown in Figure 5.14. We only plot the results out to R = 3:000, corre-
sponding to the radial interval where we have kinematic constraints along the minor axis. At
R >� 100 the models are again similar, being dominated by rotation, albeit to a much lesser extent
than along the major axis. Model A is radially anisotropic in the central region (R <� 100), and�R decreases steadily with BH mass going from model A to model C. The radial anisotropy of
the central region of the bulge of model A is required to fit the high central velocity dispersions
observed as good as possible. Close to the equatorial plane, the steep rotation curve observed
prevents model A from being too radially anisotropic (see also Section 5.6.4). Model B is again
remarkably close to two–integral form, having �z=�R � 1:0.

The fact that our best fitting model has a DF that is close to two–integral form is particularly
intriguing in the light of some recent results. As pointed out by Merritt (1998, and references
therein), the presence of a massive BH has a smoothing effect on the orbital population of a
triaxial galaxy: the box orbits that support the triaxiality are strongly influenced by a central BH,
since stars on box orbits pass arbitrarily close to the center after a long enough time. Chaotic
mixing (Kandrup & Mahon 1994; Merritt & Valluri 1996) occurs, which smoothes out the phase–
space density. The smoothest DF for an axisymmetric system is the one that is constant with
respect to the third integral, i.e., f = f (E; Lz). In chapter 4, we used the same three–integral
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FIGURE 5.14— Same as Figure 5.13, except that here the quantities are averaged over a cone with half–opening
angle of 60o centered on the symmetry axis R = 0 of the models.

modeling technique as employed here and found the best fitting model for M32 to not only
harbor a massive BH, but also to have a DF that is remarkably close to two–integral form, i.e.,
similar to the results for NGC 4342 presented here. These results are thus consistent with a
scenario in which M32 and NGC 4342 have evolved towards axisymmetric structures of two–
integral form because of chaotic mixing induced by a massive BH.

5.6.4 The influence of central radial anisotropy

We now investigate to what extent radial anisotropy can influence the central kinematics of
NGC 4342. We solve the orbit weights for the model with ϒI = 7:25 M�= L� and MBH = 0 using
two different sets of constraints. The first one uses all constraints except the rotation velocities
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FIGURE 5.15— Radial velocity anisotropy at work: Solid lines are for a model with ϒI = 7:25 M�=L� and MBH = 0,
where we have neglected the FOS measurements of the rotation velocities. The dashed lines correspond to the same
model, but for which we have neglected the FOS velocity dispersion measurements. The two lower panels show the
intrinsic dynamics, hv2

Ri1=2 (lower left panel) and hv2�i1=2 (lower right panel), of the two models.

measured with the FOS. The second one excludes only the FOS velocity dispersions from the
constraints. The results for both models are shown in Figure 5.15, where we plot the predictions
for the rotation velocities and velocity dispersions of both models. We only plot the predictions
for the FOS kinematics: both models have almost indistinguishable WHT kinematics. The lower
two panels in Figure 5.15 show the dynamics of the resulting models; we plot both hv2

Ri1=2 andhv2�i1=2 as function of radius. These quantities are averaged between � = 0o and � = 90o.

The model with the FOS rotation velocities excluded from the constraints (solid lines) reveals
the highest central velocity dispersion achievable without a BH, while still fitting the WHT mea-
surements. The model predicts a central rotation curve that is too shallow to fit the observed
rotation velocities, and is strongly radially anisotropic in the center. The model excluding the
FOS velocity dispersions (dashed lines) shows a very steep central rotation curve. The model is
strongly azimuthally anisotropic in the center, resulting in a much smaller central velocity dis-
persion. Clearly, a model without a central BH cannot simultaneously fit the rotation velocities
and velocity dispersions measured with the FOS.
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5.6.5 The density distribution in the outer region of NGC 4342

The best–fitting mass–to–light ratio of ϒI = 6:3M�=L� is unusually large for the stellar popula-
tion of an early–type galaxy (e.g., van der Marel 1991). The mass–to–light ratio is mainly set by
the large rotation velocities measured at the outside of NGC 4342 (along the major axis). The
large value found may indicate that NGC 4342 is embedded in a massive dark halo. We did
not attempt to include such a component for two reasons: First, we are mainly interested in
trying to fit the central kinematics and to examine the mass of a possible BH. The characteris-
tics of a possible dark halo will not affect the central dynamics, and therefore will not alter our
main conclusion that NGC 4342 harbors a massive BH. It may however result in a different dy-
namical structure of the outer bulge and disk. Secondly, since we can fit all kinematics without
having to infer a dark halo, including such a component in the models will merely lead to a
large range of different models that can fit the observed kinematics equally well. Only kinemat-
ics at much larger radii can constrain the presence and characteristics of such a possible dark
halo (cf. chapter 2).

Since mass–to–light ratio scales with distance d as d�1, another explanation for the large
value of ϒI derived might be an underestimate of the distance. In order to bring the inferred
mass–to–light ratio in accordance with the average value for early–type galaxies, NGC 4342 has
to be at about twice the assumed distance of 15 Mpc. This is however hard to reconcile with
the observed heliocentric velocity of NGC 4342 of only 714 km s�1 (de Vaucouleurs et al. 1976).
Galaxies out to 15 Mpc from the center of the Virgo cluster can still experience a Virgocentric in-
fall of a few hundred km s�1: our local group falls towards Virgo with� 200 km s�1 (Tammann
& Sandage 1985). A distance of 30 Mpc for NGC 4342, however, would imply a Virgocentric
infall velocity of � 1500 km s�1 (where we have taken Virgo to be at 1100 km s�1), which seems
too large. So, the small recession velocity of NGC 4342 implies that it can not be too far behind
Virgo such as to have an appreciable effect on the inferred mass–to–light ratio.

Another problem related to the outer density distribution is that the mass model used (the
MGE model) falls off as exp(�r2) at large radii. This is probably not correct, but since we only
have photometry that is limited to a small radial extent, we cannot examine this in more detail.
The main requirement is that we have a proper mass model for the major part of the galaxy.
Our MGE model has a total luminosity of LI = 3:57� 109 L�. We have shown in Section 5.2,
that for this luminosity we derive B� V = 1:09, in good agreement with the average value for
early–type galaxies. This therefore suggests that our MGE model covers the major part of the
galaxy, and that the galaxy does not extend far beyond the radial extent of our MGE model. In
addition, as is the case with a dark halo, a change in the luminosity density profile in the outer
parts of NGC 4342 will not affect our main conclusions regarding the presence of a central BH.

5.6.6 Comparison with other BH detections

There are now about a dozen BH candidates known. The best cases are the center of the MW,
where a proper motion study has revealed a 2:5 � 106 M� BH (Eckart & Genzel 1997), and
NGC 4258, where water masers are found to be in Keplerian rotation around a 3:6� 107 M�
BH (Miyoshi et al. 1995). Other strong evidence for the existence of massive BHs comes from
the observation of the Fe K� line at 6.4 keV in a number of Seyfert 1 nuclei: the X–ray emission
line exhibits relativistic motions, interpreted as arising from the accretion disk surrounding a
massive BH (Tanaka et al. 1995; Nandra et al. 1997).

Most other BH detections (or confirmations) are based on observations with the HST. Obser-
vations of nuclear gas disks with the HST has provided strong cases for massive BHs in M84,
M87, NGC 4261, NGC 6251, and NGC 7052. All other cases are based on stellar dynamical
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evidence: M31, M32, NGC 3115, NGC 3377, NGC 3379, and NGC4486B. Of these only M 32,
NGC 3379 and NGC 4342 discussed here have been confronted with three–integral modeling
thus far. As discussed in the introduction, one can only hope to properly detect a BH if one
can observe its kinematics inside rinf. All currently detected BHs have rinf > 0:100, and since all
these galaxies, except the nucleus of the Milky Way, have now been observed with the HST,
all current BH–candidates fulfill this requirement. Remarkable enough, most of these galaxies
(M31, M32, M87, NGC 3115, and NGC 4594) were already considered BH candidates when the
angular resolution of the observations was still an order of magnitude larger, and similar to the
angular size of the radius of influence of the inferred BH (Rix 1993). The BH in NGC 4342 has a
relatively small radius of influence, with an angular size of � 0:400. Indeed we have shown that
only the HST/FOS observations are of sufficient spatial resolution to rule out models without a
central BH.

Kormendy & Richstone (1995) have suggested a relation between the mass of the BH and
that of the bulge of its parent galaxy: hMBH=Mbulgei = 0:22+0:14�0:09 � 10�2. For more detailed dis-
cussions on this relation, including the results for NGC 4342 presented here as well as other
recent BH detections see van der Marel (1997), Kormendy et al. (1998), Ho (1998), Merritt (1998),
Richstone (1998), and van der Marel & van den Bosch (1998). NGC 4342 is the galaxy with cur-
rently the second–highest ratio of BH mass over bulge mass of 2:6+1:5�0:9� 10�2, and is only super-
seded by the peculiar galaxy NGC 4486B, for which the case of a massive BH is less strong (Ko-
rmendy et al. 1997). NGC 3115 (MBH=Mbulge = 2:4� 10�2) and the Milky Way (MBH=Mbulge =
0:017� 10�2) are other clear deviants. Clearly, the scatter around the suggested relation is con-
siderable, seemingly as large as nearly two orders of magnitude.

5.7 Conclusions

Spectra obtained with the WHT and HST/FOS of the edge–on S0 galaxy NGC 4342 have re-
vealed a very steep central rotation curve and a strong central increase in velocity dispersion.
These data suggest a large central mass concentration. In this chapter we presented detailed
dynamical models of NGC 4342 used to investigate whether its nucleus harbors a massive BH.

We model the luminous density distribution of NGC 4342 with multiple Gaussian compo-
nents. After projection and PSF convolution this model provides an excellent fit to the HST
I–band surface brightness distribution. The parameters of this model were derived with the
MGE method.

Simple isotropic Jeans models suggest that NGC 4342 harbors a massive BH of a few times
108 M�. The actual mass of the BH depends on the dataset fitted: the WHT data suggest MBH �
3� 108 M�; the HST/FOS data suggest a somewhat larger BH mass of � 6� 108 M�. This dis-
crepancy already suggests that the assumptions underlying the Jeans models, i.e., f = f (E; Lz)
and therefore �R = �z, are incorrect. This is also evident from the fact that the Jeans models
cannot accurately fit the major axis rms velocities measured with the WHT. These rms veloc-
ities are independent of the freedom in the anisotropy ��=�R allowed in the Jeans modeling.
We find that for a mass–to–light ratio ϒI = 6:2 M�= L� and an isotropic velocity distribution
(�R = �z = ��) the Jeans model with MBH = 3� 108 M� provides the best fit to the observed
WHT velocity dispersions along the major axis. However, the rotation velocities are not very
well fitted and we find a correlation between Vobs=Vmod and the local ellipticity of the projected
surface brightness, such that the model underpredicts the rotation velocities in the highly flat-
tened regions (dominated by the disk light) and overpredicts them in the less flattened region
(dominated by the bulge light). This suggests that the different components in NGC 4342 have
different velocity anisotropies.
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We thus constructed three–integral axisymmetric models of NGC 4342 in order to examine
the mass of a possible BH and the dynamical structure of the different components. The model-
ing technique is an extension of Schwarzschild’s orbit–superposition technique, and is based on
finding the ensemble of orbits that best fits the observations. These models make no assumption
about the dynamical structure and are fully general. This technique (see chapters 2 and 3) has
previously been used to prove the existence of a massive BH of (3:4� 0:7)� 106 M� in the com-
pact elliptical M32 (chapter 4). We have constructed a range of dynamical (MBH;ϒI)–models
of NGC 4342 to determine a central BH mass of 3:0+1:7�1:0 � 108 M� and an I–band mass–to–light

ratio of 6:3+0:5�0:4 M�= L�. The high spatial resolution of the HST/FOS data allow us to rule out
models without a BH to a confidence level better than 99:73 per cent. With a similar confidence
we can rule out models with a BH more massive than 7� 108 M�. This upper limit on the BH
mass is mainly due to the VP shape parameters h3 and h4. With the current data we can not
rule out alternatives to a massive BH, such as a cluster of brown dwarfs or stellar remnants.
Nevertheless, the QSO paradigm, together with the fact that the presence of massive BHs in
galactic nuclei has unambiguously been demonstrated in a few galaxies were the inferred cen-
tral densities are high enough to rule out dark clusters as alternatives (see discussion in Maoz
1997), make the interpretation of the inferred MDO in NGC 4342 in terms of a massive BH the
most likely.

We computed the intrinsic mean velocities and velocity dispersions of the three–integral
models. The dynamical structures of the best fitting models vary strongly with radius, reflecting
the multi–component structure of NGC 4342. Between 200 and 1200 in the equatorial plane the
best fitting models change from azimuthally anisotropic to radially anisotropic, while �z=�R �
0:9. This explains the correlation between the projected ellipticity and the failure of the isotropic
Jeans models to fit the observed rotation velocities along the major axis. The bulge in the best
fitting model without BH is radially anisotropic. However, we have shown that even without
the constraints of the measured HST/FOS rotation velocities, models without BH cannot fit the
central HST/FOS velocity dispersion. The rotation velocities measured from the ground already
constrain the amount of central radial anisotropy such that models without a BH cannot fit the
high central velocity dispersion measured with the HST/FOS.

The BH mass thus derived contributes a fraction of 2:6+1:5�0:9 per cent to the total mass of

the bulge (1:2� 1010 M�). With this BH mass, NGC 4342 has one of the highest ratios of BH
mass over bulge mass. Currently, the BH in our own galaxy has, with 0:02 per cent, the lowest
BH mass to bulge mass ratio known: the scatter in the MBH vs. Mbulge relation seems to be
as large as two orders of magnitude. Extremely high spatial resolution is required in order to
investigate if other galaxies have even lower values of MBH=Mbulge. In conclusion, current data
are consistent with a relation between bulge mass and BH mass, but the scatter is very large,
and it is likely that the current MBH=Mbulge ratios found are biased towards an upper limit.
Although the newly installed Space Telescope Imaging Spectrograph (STIS) is likely to detect
many more BH cases in the coming years, detection of BHs with masses of the order of a 0:02
per cent of the bulge mass or less in galaxies in Virgo or beyond, will probably have to await a
next generation space telescope.

Recently, Merritt & Quinlan (1998) have proposed a self–regulating mechanism that can
explain the relation between bulge mass and BH mass. In this theory, it is assumed that the
growth of BHs is dependent on the global morphology of their host galaxies: box orbits, present
in non–axisymmetric structures, are believed to be efficient in driving large amounts of gas into
the nucleus, thus allowing the BH to grow. As already mentioned in Section 5.6.3, these box
orbits are in turn strongly influenced by a central point mass: a triaxial bulge containing a
massive BH evolves towards rounder or at least more axisymmetric shapes. Merritt & Quinlan
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found, using N–body simulations, rapid evolution to nearly complete axisymmetry once the
BH mass exceeded � 2:5 percent of the mass of the bulge. This ratio is interestingly close to
that of NGC 4342 and NGC 3115, the current record holders (if we exclude NGC 4486B). This
agreement suggests that MBH=Mbulge may indeed be limited by a feedback mechanism that
turns off the supply of fuel once the BH has become massive enough to destroy the box orbits
and thereby evolve to an axisymmetric shape.
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Chapter 6

The Distribution of Stellar Orbits in NGC 2320

Cretton, N., Rix, H.–W., de Zeeuw P. T.
1999, to be submitted to MNRAS

We present direct observational constraints on the internal velocity distribution of the giant elliptical
NGC 2320. Spectroscopic data within one effective radius along multiple position angles is used to
derive the line–of–sight velocity distribution, quantified by the Gauss–Hermite moments. In addi-
tion, the gas rotation curve and dispersion profile are measured from the [OIII] emission lines. After
correcting for the asymmetric drift, we calculate the circular velocity of the gas, which provides an
independent constraint on the normalization of the gravitational potential.

To interpret the stellar motions, we build axisymmetric three–integral dynamical models by means of
an extension of the Schwarzschild orbit–superposition technique. We construct models in which the
mass follows the light (i.e., no dark matter) and models with a logarithmic gravitational potential.

Using �2–statistics, we combine the stellar and gas data to constrain the value of the mass–to–light
ratio ϒV (in the V-band). We find ϒV = 15:0� 0:6 h75 for the mass-follows-light models and ϒV =
17:05� 0:7 h75 for the logarithmic models. For the latter, ϒV is defined as the mass enclosed within 1500
divided by the total amount of light in the same volume.

Radially constant ϒV models (without dark matter) and logarithmic models (with dark matter) provide
comparable good fits to the data and possess similar dynamical structure. For the full range of ϒV

permitted by the observational constraints, the models are radially anisotropic along the major axis in
the interval meaningfully constrained by the kinematical data (100 �< r �< 4000). Along the true minor
axis, they are more nearly isotropic. The best fitting model has �r=�total ' 0:7, ��=�total ' 0:5� 0:6
and ��=�total ' 0:5 in the equatorial plane. We explore the uncertainties associated with the anisotropy
profiles by examining the formal 3�–range of models around the best fitting ϒV .

THE orbital distribution of stars, often quantified by the (an)–isotropy of the local velocity
dispersion, is a useful measure of the dynamical state of a galaxy. It provides constraints on

galaxy formation and helps discriminating between N-body merger remnants. Furthermore, it
has been a classic diagnostic to study the mass distribution of galaxies.

Anisotropy profiles can only be obtained from observations through a dynamical model,
since only line–of–sight velocities can be measured for external galaxies. For a number of rea-
sons the construction of such models is more difficult for elliptical galaxies than for spirals. El-
liptical galaxies generally have no simple tracer population that could be used to derive the un-
derlying gravitational potential (like HI disks in spirals). These systems are known to support
a variety of orbital shapes that largely overlap each other. Furthermore there is a well–known
degeneracy between orbital anisotropy and mass. On the observational side, stellar velocity
distributions in ellipticals usually have to be derived from absorption lines, which are harder to
measure accurately than emission lines.

This situation is improving on various fronts: fully anisotropic dynamical models can now
be constructed and matched to observations (see e.g., Rix et al. 1997, chapter 2 of this thesis;
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Richstone et al. 1997; Gerhard et al. 1998; Cretton et al. 1999, chapter 3 of this thesis). The mass–
anisotropy degeneracy can in principle be broken with the use of the full line–of–sight velocity
distributions, also called Velocity Profiles (hereafter VPs) (see e.g., Gerhard 1993). Measure-
ments of VPs at several positional angles and extended radii further constrain the dynamical
structure of the galaxy (see e.g., Carollo et al. 1995; Statler, Smecker–Hane & Cecil 1996).

What is known about the intrinsic dispersion profiles in elliptical galaxies? Keeping in
mind the various limitations (in the modeling or in the observations), we can already draw
some conclusions from a few recent studies. In chapter 2, we constructed spherical anisotropic
models for NGC 2434 and we concluded that half of the mass inside one effective radius (Reff)
needs to be dark. Inside this range, the dispersion profiles are flat and obey �r=�total = 0:7,��=�total = ��=�total = 0:5. Matthias & Gerhard (1999) built axisymmetric 3–integral models of
NGC 1600. They did not need any DM inside 1 Reff and deduced radial anisotropy in the outer
parts (��=�r ' ��=�r ' 0:7), and a more isotropic structure in the center. In their spherical
models of NGC 6703, Gerhard et al. 1998 again found near isotropy in the center, and a mild
radial anisotropy in the outer parts, as in NGC 1399 (Kronawitter et al. 1999, in preparation).
Dejonghe et al. (1996) inferred tangential anisotropy in NGC 4697, as in NGC 1700 (Statler et
al. 1999) based on axisymmetric 3–integral models built with a quadratic programming tech-
nique, but no VPs were used in these two studies. Using fully general axisymmetric models,
Gebhardt and collaborators found that NGC 3379, NGC 3377, NGC 4473 and NGC 5845 were
radially anisotropic in the range (0.1 - 1) Reff (Gebhardt et al. 1999). Merritt & Oh (1987) derived
a slight radial anisotropy �r ' 1:2�� = 1:2�� in the main body of M87.

In this paper, we derive the anisotropy of the giant elliptical NGC 2320, combining con-
straints from the stellar VPs and from the gas rotation and dispersion curves. The simple kine-
matics of the gas (mainly circular rotation) allows an independent and straightforward measure
of the total mass of the system. Cinzano & van der Marel (1994) constructed dynamical models
for NGC 2974 and found that the velocities of the ionized gas disk were consistent with the
potential derived from the stellar kinematics.

The paper is organized as follows. In Section 6.1, we present the photometric and kine-
matic data. We describe the mass and dynamical models in Section 6.2. The range of statisti-
cally acceptable models with their associate dynamical structure is derived in Section 6.3. Sec-

TABLE 6.1— Summary of the kinematic observations.

j name telescope slit width date radial extent # of points S/N
(1) (2) (3) (4) (5) (6) (7) (8)
1 MMT-140 MMT 3.5 17 Feb 1996 37 23 25
2 MMT-50 MMT 3.5 17 Feb 1996 23 12 25
3 050 KPNO 4m 2.5 2 Mar 1998 17 8 12
4 100 KPNO 4m 2.5 27 Feb 1998 18 10 10
5 130 KPNO 4m 2.5 27 Feb 1998 27 11 12
6 142 KPNO 4m 2.5 2 Mar 1998 24 12 12
7 175 KPNO 4m 2.5 27 Feb 1998 19 10 10
8 b000 KPNO 4m 2.5 1 Mar 1998 24 9 15
9 b020 KPNO 4m 2.5 1 Mar 1998 27 10 15

10 b100 KPNO 4m 2.5 27 Feb 1998 45 18 10
11 b130 KPNO 4m 2.5 27 Feb 1998 44 19 10
12 b175 KPNO 4m 2.5 27 Feb 1998 43 16 10

Column (1) gives the number of the spectrum; column (2) its name (chosen after its position angle); column (3)
the telescope where it was taken; column (4) the slit width (in arcseconds); column (5) the date of observation;
column (6) the maximum radial extension (in arcseconds); column (7) the number of data points (after pixel
binning) for the stellar data; column (8) the S/N for the stellar data.
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FIGURE 6.1— Position of all the slits used to constrain the dynamical models. The values of the various position
angles are indicated (the major axis is PA=140 and the minor axis is PA=50). The effective radius Reff is at 29:500.
tion 6.4 summarizes the results and discusses them in the context of cosmological simulations
and mergers.

6.1 The data

6.1.1 Photometric data

NGC 2320 is a luminous elliptical galaxy with a heliocentric velocity of 5725 km/s, implying a
distance of 76.3 h75 Mpc. It has an apparent magnitude mV = 11:9 (NED), which translates to an
absolute magnitude of MV = �22:5. The galaxy image was taken at the Steward Observatory
9000 Telescope on March, 1996 on a 2k x 2k CCD (exposure time 600 seconds) in the V-band.
The scale was 0.283 arcseconds. The image was calibrated using published aperture photome-
try available via the Hypercat catalogue (CRAL, Lyon), mostly consisting of data taken at the
OHP (Prugniel & Heraudeau 1998). The effective radius Reff (i.e., enclosing half of the light) is
29.500. Our photometric data is not good enough to detect a possible central luminosity cusp (the
seeing was about 100) and no HST archive image exists. Anyway in this paper, we do not con-
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FIGURE 6.2— Mean line–of–sight velocity and dispersion of the gas along the major axis (MMT spectra). The slow
rise of the velocity is due to smearing inside the wide slit (3.5”).

centrate on the core properties of NGC 2320, since we have used a wide slit for the spectroscopic
observations.

6.1.2 Stellar kinematic data

NGC 2320 was observed during three different runs (February 96, February 98 and March 1998)
at the Multi Mirror Telescope (MMT) and the 4 meter telescope at Kitt Peak. Table 6.1 sum-
marizes the observations and Figure 6.1 illustrates all slit positions on the plane of the sky. All
these various spectra are statistically independent constraints even if they have the same PAs,
because they have a different radial extent (and binning) and, in some cases, have been obtained
at a different telescope.

After standard reduction procedure, the VPs were extracted from the absorption lines and
quantified using the Gauss-Hermite decomposition (see e.g. Rix & White 1992, van der Marel &
Franx 1993). With the same notation as in Cretton & van den Bosch (1999, chapter 5 of this the-
sis), we parameterize these velocity profiles (VPs) using Gauss-Hermite series with line strength
, mean radial velocity V, and velocity dispersion � as free parameters. The anisotropy is re-
flected in the shape of the VPs (and hence in the values of the GH–moments hi). For instance
VPs more peaked than a Gaussian usually originate from radial anisotropy and translate into
greater h4 values than their isotropic counterparts. Note that the VP shapes not only depend on
the dynamical structure, but also on the gravitational potential, which is fortunate since they
can then be used to disentangle anisotropy from mass (Dejonghe 1987, Merritt 1993, Gerhard
1993, see also Figure 2 in Gerhard et al. 1998). In total we have 632 stellar kinematic constraints
(158 data points � 4 GH–moments h1;:::;4, see Table 6.1).

A careful look at the kinematic data (Figure 6.6) reveals some systematic problems, e.g., about
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FIGURE 6.3— Surface density profile of the ionized gas disk (left) and dispersion profile (right) along the major
axis. The dots are the measured quantities, the full line is the fit. On the left panel, the dashed lines are the individual
exponentials. Both sides of the major axis are shown: full symbols correspond to the positive side and open symbols
to the negative side of the major axis.

half of the slits show a significantly higher (� 40 km s�1) central dispersion value than for the
remaining half. Given their formal errors (� 10 km s�1), such large differences amongst various
slits can not be explained statistically.

6.1.3 Kinematics of the ionized gas

After subtraction of the broadened stellar template, emission was found at 5007 [Å] and 4965
[Å], corresponding to the [OIII] lines of ionized gas (see e.g., Figure 2 of Rix et al. 1995). How-
ever, only the MMT data was of sufficient S/N to permit measurement of mean velocity and
velocity dispersion.

Usually, gas is assumed to rotate in the equatorial plane of a galaxy on nearly closed or-
bits. However, this is only true if the velocity dispersion is negligible compared to the mean
rotation velocity. In Figure 6.2, we show the mean line–of–sight velocity and dispersion of the
gas on the MMT major axis: The velocity reaches 325 km/s (inside 2000) and the dispersion de-
creases roughly exponentially from 220 km/s (center) to 100 km/s (at 1500) and thus can not be
neglected.

To derive the true circular velocity v2
c = R @Φgrav=@R from the observed vgas and �gas, we

proceed as follows (see e.g., Neistein et al. 1999). We first obtain the mean rotation velocity of the
gas, v�(R), in the equatorial plane (i.e., the plane of the disk) by de-projecting the observed vgas.
Along the major axis, we have v�(R) = vgas=sin i, where i is the inclination of the galaxy (away
from face–on). Similarly, we have ��(R) = �gas=sin i. Note that in nearly edge–on disks, this
is only approximately true, since the line–of–sight integration through the disk will reduce vgas

relative to v�. Neistein et al. (1999) estimated that this correction is less than 4% for inclinations
i < 70o.

We follow Binney & Tremaine (1987, eq. 4–33) to obtain the circular velocity of the cold gas
disk:
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FIGURE 6.4— Circular velocity (full line) when the asymmetric correction has been applied. For comparison, we
plotted also the observed gas velocity (dotted line). Both sides of the major axis have been folded to the positive
side. Only points at radii larger than 300 should be taken seriously, since during the correction we have assumed a
flat rotation curve.

v2
c = v2� + �2�� �2

R� R� @(��2
R)@R
� R

@(vRvz)@z
; (6.1)

where we assume that the final term can be neglected (i.e., the gas dynamics is close to isotropy).
We fit the luminosity density of the gas as �(R) = �1 exp(�R=R1)+ �2 exp(�R=R2) as shown
in the left panel of Figure 6.3. For a flat rotation curve, the epicycle approximation gives�2

R(R) = 2�2�(R). Since the term �R enters a derivative in eq. (6.1) we find it convenient to use
an analytic expression instead of the (noisy) data points, so we fit an exponential to �gas(R) =�0 exp(�R=R0)= ��(R) sin i (right panel in Figure 6.3). We can now evaluate the circular veloc-
ity (Figure 6.4). The error bars for vc(R) have been estimated from the left/right differences of
the rotation curve.

6.2 The models

6.2.1 The mass model

As in chapter 5, we have used the Multi Gaussian Expansion (MGE) of Emsellem et al. (1994) to
construct a mass model for NGC 2320. Briefly, in this formalism the surface brightness profile,
the mass density distribution and the PSF are all described as a sum of Gaussian components.
Free parameters include the center of each Gaussian, its position angle, flattening, central inten-
sity, and size (i.e., standard deviation) along the major axis.

We find that the density profile of NGC 2320 can be well fitted with 5 Gaussian components
(see Table 6.2), all with the same position angle and center. The mass density is expressed as�(R; z)= ϒ

5

∑
i=1

Ii exp

"� 1

2�2
i

�
R2+ z2

q2
i

�#; (6.2)
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FIGURE 6.5— Ring–like structure once the MGE model has been subtracted from the image. The big white dots
outside the ring are foreground stars. We superpose an ellipse with an axis ratio of 0.41 and a semi major axis of 1700
on top of the ring (white dashed line).

where ϒ is the mass–to–light ratio, Ii is the central intensity (in L�=arcsecond3), �i the standard
deviation (in arcseconds) and qi the flattening of each Gaussian. The corresponding gravita-
tional potential (and forces) are obtained by solving Poisson equation and can be written as
one–dimensional quadratures (see chapter 5 for details). In this case, the mass distribution fol-
lows the light.

When we subtract the MGE model from the image, a disky structure appears with a radial
extent of � 1700 and an axis ratio of � 0:5 (Figure 6.5). Assuming this ring of excess light lies in
the equatorial plane, we have a constraint on the inclination angle. From the apparent axis ratio
of 0.5, we deduce an inclination i � 60o, which we adopt for the remainder of this paper. The
apparent flattening of the galaxy (0.6–0.7) makes it unlikely to be much more inclined, since
galaxies intrinsically as flat as E6 are very rare. Van den Bosch & Emsellem (1998) found a
similar stellar ring in the nuclear region of NGC 4570.

We have explored another set of models in which the total gravitational potential and the
luminous density are not related by Poisson equation: models with a logarithmic potential

Φlog(R; z)= 1

2
v2

0 ln

 
R2

c + R2+ z2

q2
Φ

!: (6.3)

We still use the MGE density law (equation 6.2) to describe the luminosity profile of NGC
2320. We have chosen the simple logarithmic potential (with flat circular velocity at large radii)
to build a sequence of models with dark matter halos. We took qΦ = 0:83 such that the flattening
of the corresponding mass density profile is similar to that of the MGE models, q� � 0:5� 0:6.
We adjust Rc such as to match the inner parts of the circular velocity curve and we scale the
various models with v0. The quantity Rc is probably an upper limit of the true core radius, since
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we did not fit deconvolved data. Nevertheless it is not likely to have a large influence on the
main results of this paper.

In chapter 2, we used dark halo profiles suggested by cosmological N–body simulations
(Navarro, Frenk, & White, 1996) and adiabatically contracted them to account for the luminous
material. We found that the best fit dark halo profile was nearly indistinguishable from a simple
logarithmic model over the radii probed by the kinematics of integrated light.

6.2.2 The dynamical models

The method used here to construct dynamical models is based on the orbit superposition tech-
nique of Schwarzschild and was described extensively in chapter 3. We limit ourselves here to
the specific parameters we used for NGC 2320.

We sample our orbits using a grid in integral space, energy E, vertical component of the
angular momentum Lz and third integral I3. We use 20 values of E = 1=2 Rc @Φ=@R+Φ(Rc; 0),
sampled through the radius of the circular orbit Rc. We take a logarithmic sampling of Rc in
[0:100; 300:000], since less than one percent of the total mass of our MGE model lies outside this
range. 14 values of Lz per E in [�Lz;max;+Lz;max] and 7 values of I3 per (E; Lz) were adopted
as in chapter 5. We do not imply that I3 is defined for every value of (E; Lz), i.e., every orbit
is regular, but instead we sample I3 by choosing starting points on the zero-velocity curve (see
chapter 3): when the orbit is indeed regular, this starting point can truly be interpreted as a third
integral.

The orbit library is constructed by numerical integration of each trajectory for a fixed amount
of time (200 periods of the circular orbit at that E) using a Runge–Kutta scheme. During inte-
gration, we store the fractional time spent by each orbit in a cartesian “data–cube” (x0; y0; vlos),
which is further convolved with the PSF and binned into the various slits, where (x0; y0) are the
projected coordinates on the sky and vlos, the line–of–sight velocity. Furthermore, we adopt
logarithmic polar grids in the meridional plane (R; z) and in the (x0; y0) plane with the same
Rc–radial range and sampling. Orbital occupation times are stored in these grids to make sure
the final orbit model reproduces (to a few percent accuracy) the MGE mass model. The lowest
order velocity moments of each orbit are also stored on such a grid for analysis of the intrinsic
dynamical structure of the model (see chapter 3 for details).

The mass on each orbit is computed with the NNLS algorithm (Lawson & Hanson 1974),
such that the non–negative superposition of all orbits aims at reproducing the kinematic data
(within the errors) and the projected and intrinsic MGE mass profile. Smoothness in inte-
gral space is enforced through a regularization technique. It allows the derivation of smooth
anisotropy profiles of a few selected models.

TABLE 6.2— Parameters of MGE model for the luminous density profile.

j Ij a j q j

(1) (2) (3) (4)
1 287764585.49 0.820 0.544
2 18868477.1 3.000 0.443
3 1826940.9 8.585 0.419
4 219268.2 19.061 0.505
5 9359.8 56.370 0.676

Column (1) gives the index number of each Gaus-
sian. Column (2) gives its central luminosity density (in
L�=arcsec3); column (3) its standard deviation (which ex-
presses the size of the Gaussian along the major axis) and
column (4) its flattening. All Gaussians have the same po-
sition angle and the same center.
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FIGURE 6.6— Kinematic data for all the slits and fits of the two best fit models: the full line is the model where
the mass follows the light and the dotted line is the model with the logarithmic potential. The columns have been
organized in increasing Position Angle order, starting from the MMT major axis. The top line shows the fit of the
(normalized) mass constraints in the meridional plane and in the plane of the sky. In the fit of the meridional plane
constraints, we exclude the cells closest to the symmetry axis. This explains the jagged appearance of the fit for these
constraints.

6.3 Results

6.3.1 Fits to the data

In Figure 6.6, we show the two best fit models to all the data, in the case where mass follows
light (full line) and in the logarithmic potential case (dotted line). The first row displays the fit to
the mass constraints (intrinsic and projected), normalized to unity. The second row shows the fit
to the integrated surface density in the slit bins (also normalized to unity). The subsequent rows
show the kinematic data and the fits of both models. Each column corresponds to a different



148 CHAPTER 6 THE DISTRIBUTION OF STELLAR ORBITS IN NGC 2320

FIGURE 6.7— �2 distributions for the models with spatially constant ϒV . The dotted line is �2
gas, the full line is �2

stars

and the dashed line (with open dots) corresponds to the combination of both type of constraints. The dots represent
the actual model calculations. The inset shows in more details the region near the (combined) �2 minimum. The
horizontal dotted line has �2 = �2

min+ 9.

slit (see Table 6.1).

Both models (i.e., with and without DM) fit the data comparatively well. The differences
appear at large radii (e.g., in the velocity dispersions), where the circular velocities of the two
models (i.e., the enclosed masses) start to diverge. The two models have problems fitting about
half of the central dispersion points. This may be due to the absence of a density cusp (and/or
central black hole) in our MGE model, but as mentioned earlier (see Section 6.1.2), there are sys-
tematic problems with the data in the center. Moreover, for some position angles, the observed
dispersion seems to drop too fast compared to the models, whereas for other position angles, it
could be well fitted.

6.3.2 Goodness of fit

We wish to assess statistically which value of ϒV provides the best fit to the data (in terms of�2). We obtain a set of different models (with different ϒV) by rescaling one orbit library. We
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FIGURE 6.8— Same as Figure 6.7, but for the model with the logarithmic potential.

then perform a NNLS fit for each new model and compute the �2 difference with the data.
In this way, we can study the stellar �2 distribution, �2

stars, as a function of ϒV . A similar �2

comparison is done with the gas data: After rescaling a model by ϒV, we ask by how much the
new circular velocity (rescaled by

p
ϒV) differ from the one derived from the gas measurements

(see Section 6.1.3), yielding a distribution �2
gas. These two distributions can be combined to get

better constraints on ϒV. The combined probability distribution is P (ϒV)� exp[�(�2
stars+�2

gas)]
(Press et al. 1992).

For a good fit, one expects �2 to be roughly equal to the number of data points, which
was not the case in the stellar fits, probably due to systematic discrepancies in the data from
different runs (Section 6.1.2). Following Kochanek (1994), we rescale the �2

stars distribution such
that �2

stars;min = 632. Similarly, we consider the 15 gas data points with jx0j > 300 for which

the gas rotation curve is roughly flat and rescale the �2
gas distribution, so that �2

gas;min = 15.

In Figure 6.7, we plot �2
gas, �2

stars, and the combined �2
comb distribution as function of ϒV for

the models in which the mass follows the light. The minimum �2
min; comb is attained for ϒV =

15:0� 0:6, where the error bar corresponds to the formal 99.73 % confidence level or 3� interval
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FIGURE 6.9— Anisotropy profiles of the model with ϒV = 15. The first column is an average around the symmetry
axis, and the second one around the equatorial plane. The first row shows the second moments in km/s, the second
one the ratio of the dispersions to the total dispersion, and the last one shows the anisotropy parameter defined as�a = 1� �2

a=�2
r . The inset in the upper right panel explains the line convention.

(i.e., the range of ϒV for which �2
comb = �2

min+ 9). We perform the same exercise for the model
with the logarithmic potential. In that case, ϒV is defined as the mass enclosed within 1500
divided by the total amount of light in the same volume. We find ϒV = 17:05� 0:7 at the same
confidence level (Figure 6.8).

In order to compare with the sample of 37 bright elliptical studied by van der Marel (1991),
we first calculate the total absolute magnitude of NGC 2320 in B using his choice for H0, and
find MB = �23 h50. We then translate our value of ϒV (15) in the V–band into the R–band to
place NGC 2320 on van der Marel’s Figure 6 (upper left panel). Using V–R of 0.77 (typical for
K0 giants) we find ϒR = 8:0. This value is 1.8 times higher than the prediction of his least–square
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FIGURE 6.10— Same as Figure 6.9, but for the model with the logarithmic potential.

fit relation at that absolute magnitude, making NGC 2320 a slight outlier.

6.3.3 Intrinsic velocity dispersions

Using solutions with a moderate amount of regularization (as defined in Section 5.4.5 of chapter
5), we compute second moments, ratio of dispersion profiles and the usual anisotropy param-
eter � (see e.g., Binney & Tremaine, 1987) along major and minor axis for the best fit models.
In Figure 6.9 we show such quantities for the best fit model with a radially constant ϒV of 15.
The results are averaged over cells with the same radius but with a different angle �, which is
the usual spherical coordinate: In the meridional plane, the first three angular sectors closest
to the minor axis are averaged together (left column of Figure 6.9), as well as the remaining
four closest to the major axis (right column). The first row displays the second moments as a
function of radius. The ratios of the dispersions to the total dispersion are shown in the second
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FIGURE 6.11— The anisotropy parameter as in Figure 6.9: the densely shaded region indicates the values of � for
models which lie in the formal 99.73 % confidence level region around the best fitting model (see Figure 6.7).

row. In the last row, we plot the anisotropy parameter �a = 1� �2
a=�2

r for a = � (dotted line) or
a = � (dashed line). Positive � corresponds to radial anisotropy. Figure 6.10 shows the same,
but for the model with the logarithmic potential. Both types of models (with and without DM)
have a similar general behavior: they are dominated by radial anisotropy for most radii mean-
ingfully constrained by the data. The radii outside the range of the kinematic data are indicated
with shades in Figures 6.9 and 6.10. On the true major axis, �� ' 0:4� 0:5 and �� ' 0:0� 0:3,
whereas �� � �� � 0:0 on the symmetry axis (except in the central 300).

In Figure 6.11 and 6.12, we concentrate on the � parameters. We consider two additional
models around the best fit to estimate the difference (in terms of anisotropy) between models
that are statistically acceptable. As mentioned in Section 6.3.2, the two limiting models have�2 = �2

min + 9, corresponding to the 99.73 % confidence level. We compute the �–profiles of
these two models and shade the region in between them (Figure 6.11 and Figure 6.12). In this
way, we can estimate an error bar for the quantity �. All models in the 99.73 % confidence
interval follow the same trend: they are radially anisotropic on the major axis and more isotropic
on the minor axis.

6.4 Conclusions and Discussion

We have constrained the anisotropy of NGC 2320 using a combination of kinematic data: stellar
VPs along multiple position angles (see Table 6.1), and mean velocity and velocity dispersion
of the emission line gas along the major axis. The dense coverage of the galaxy by the various
long slits is crucial to constrain the dynamical model. The gaseous data provides an additional
constraint on the normalization of the potential (i.e., on the total mass).

The dynamical models are constructed following our extension of Schwarzschild’s orbit su-
perposition technique described in chapter 3. The best fitting model is dominated by radial
anisotropy near the equatorial plane and is more isotropic on the symmetry axis. This conclu-
sion is valid for models in which the mass is proportional to the light and also for models with
a flat rotation curve at large radii (logarithmic potential). We find a best fit ϒV of 15:05� 0:6 for
the radially constant ϒV model and 17:0� 0:7 for the logarithmic one. We study the dispersion
profiles of models for these intervals of ϒV in order to determine the range of anisotropy cov-
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FIGURE 6.12— Same as Figure 6.11, but for the logarithmic potential mass model.

ered by statistically acceptable models. This range is small in general and most models in the
ϒV interval follow the same trend (i.e., radial anisotropy in the equatorial plane, isotropy near
the symmetry axis).

Radial anisotropy has also been found in a few other objects (NGC 2434, NGC 1600, NGC
6703, NGC 1399, NGC 3377, NGC 3379, NGC 4473, NGC 5845 and M87). It seems worth com-
paring to the dynamical structure of merger remnants produced by N–body simulations. As
pointed out by Dubinski (1998), merger simulations leading to the formation of an elliptical
galaxy have concentrated on mergers of a pair of disk galaxies (Barnes 1992; Barnes & Hern-
quist 1996), of several disk galaxies (Barnes 1989; Weil & Hernquist 1996) or of small virialized
clusters of spherical galaxies (Funato, Makino & Ebisuzaki 1993; Garijo, Athanassoula & Garcia–
Gomez 1997). For these reasons, Dubinski carried out more realistic cosmological simulations.
He found that the anisotropy of the brightest cluster galaxy grows gently from � = 0:0 near
the center to � = 0:5 at 3 Reff. Inside one Reff, his N–body model is mildly radially anisotropic
(� < 0:3). This is qualitatively consistent with our results for NGC 2320.

A comparison of NGC 2320 with Barnes’ results is more complicated: In his collisionless
simulations, Barnes (1992) typically finds triaxial merger remnants with a large fraction of box
orbits (see e.g., his figure 20). These box orbits do not exist in the axisymmetric case, only the
tubes are present. But if NGC 2320 is indeed triaxial, the box orbits may be responsible for the
radial anisotropy. Since our models are axisymmetric, they have no other choice than to put a lot
of weight on low Lz tubes to produce radial anisotropy. This is not the case for Barnes’ models:
the box orbits (with Lz = 0) are responsible for the radial anisotropy whereas his population of
tube orbits seems fairly uniform in Lz (see his Figures 20b, 21b and 22b).

It is tempting to envision (axisymmetric) radially anisotropic models as previously triaxial
models that evolved towards axisymmetry: in this picture, the box orbits are the progenitors
of the radial tube orbits (responsible for the radial anisotropy in axisymmetric systems). Black
holes, steep central density cusps and central gas concentrations can efficiently scatter stars on
box orbits and destroy the triaxiality (see e.g., Gerhard & Binney 1985; Barnes & Hernquist
1996; Merritt & Quinlan 1998). If the amount of gas accumulated at the center is large, one can
imagine that box orbits are so efficiently destroyed that very little radial anisotropy is left in the
distribution of tube orbits. Therefore, in this scenario, the prevalence of radial orbits in NGC
2320 argues against a merger in which large amounts of gas flowed to the center.
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DIT proefschrift bevat een studie naar de eigenschappen van vroeg-type (elliptische en lens-
vormige) sterrenstelsels met behulp van gedetailleerde dynamische modellen. Deze mo-

dellen zijn gebaseerd op de veronderstelling dat een sterrenstelsel eenvoudiger te beschrijven is
in de vorm van een verzameling van banen dan als een verzameling van sterren. Dit idee wordt
in dit proefschrift gebruikt om dynamische modellen voor enkele vroeg-type sterrenstelsels te
bouwen. Daartoe wordt een grote verzameling sterbanen berekend, en wordt het aantal sterren
in elke baan zodanig aangepast dat waargenomen eigenschappen (de licht- en snelheidsver-
deling) worden gereproduceerd. Het uiteindelijke ‘baanmodel’ is bedoeld om een zo getrouw
mogelijke representatie van het waargenomen sterrenstelsel te zijn. Het voordeel van deze aan-
pak (en zijn voornaamste drijfveer) is dat er van te voren geen vereenvoudigende aannamen
worden gemaakt wat betreft de dynamische structuur van het sterrenstelsel. Dit is essentieel bij
het zoeken naar zware zwarte gaten in de kernen van sterrenstelsels, omdat een vereenvoudigd
model onjuiste resultaten kan geven.

Hoge kwaliteit gegevens, zowel verkregen vanaf Aarde als vanuit de ruimte met de Hub-
ble Space Telescope, worden in dit proefschrift geı̈nterpreteerd met behulp van zulke baanmo-
dellen (hoofdstuk 3). Deze gegevens, in combinatie met de gepresenteerde modellen, leveren
overtuigend bewijs voor de aanwezigheid van donkere materie (zie onder). In het bijzonder wor-
den de centrale concentraties van donkere materie in M32 en NGC 4342 bestudeerd. Zwarte
gaten vormen hiervoor de meest waarschijnlijke verklaring (hoofdstuk 4 en 5). De waargeno-
men snelheden in NGC 2434 laten zien dat dit sterrenstelsel omgeven moet zijn door een zware
donkere halo die een aanzienlijk deel van de totale massa bevat (hoofdstuk 2). Tenslotte wordt
de interne dynamica van NGC 2320 behandeld. Hieruit blijkt dat de sterren voornamelijk in
radiële banen bewegen (hoofdstuk 6).

Sterrenstelsels

Sterrenstelsels zijn reusachtige verzamelingen van sterren, gas, stof en planeten. Grote exem-
plaren bevatten ongeveer honderdmiljard sterren. De hoeveelheid gas en stof varieert van een
paar procent van de totale stermassa tot tien procent voor de meest gasrijke objekten. Hoe-
wel de totale massa van de planeten volkomen onbeduidend is vergeleken met de stellaire en
gasmassa’s, beschouwt de mensheid deze objekten als zeer belangrijk!

Sterrenstelsels kunnen aan de hand van hun schijnbare vorm grofweg in drie kategorieën
worden onderverdeeld: schijfvormige, elliptische en onregelmatige (zie figuur 6.13). Schijf-
vormige stelsels zijn erg platte objekten, soms met prachtige spiraalarmen en een bolvormig
centraal gedeelte, ook wel ‘lens’ genoemd. De spiraalarmen kunnen in meer of mindere mate
rond de lens gewikkeld zijn, die op haar beurt verschillende groottes kan hebben. Deze kenmer-
ken laten een verdere klassificatie van de verschillende typen spiraalstelsels toe. Omdat de Zon
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zich in de schijf van ons sterrenstelsel bevindt, zijn er langs een gezichtslijn in het vlak van de
schijf meer sterren zichtbaar dan loodrecht op het vlak. Dit verklaart de verschijningsvorm van
ons sterrenstelsel aan de nachthemel en zijn naam, de ‘Melkweg’. Lensvormige sterrenstelsels
bestaan uit schijven zonder spiraalarmen en met een grote centrale lens. Elliptische sterren-
stelsels, ook wel vroeg-type sterrenstelsels genaamd, zien er rond uit (grofweg als een ei) en
bevatten veel minder gas dan spiraalstelsels. Hun voorkomen is gladder, wat ertoe leidde dat
sterrenkundigen ervan uit gingen dat deze objekten een eenvoudige dynamische structuur heb-
ben. Tenslotte omvat de laatste kategorie (de onregelmatige sterrenstelsels) alle sterrenstelsels
die niet in de andere twee kategorieën konden worden opgenomen vanwege hun verstoorde
vorm.

De overheersende gedachte is dat sterrenstelsels vroeg in de geschiedenis van het Heelal
ontstaan zijn, ongeveer 15 miljard jaar geleden. Sterrenkundigen proberen te begrijpen hoe zij
gevormd zijn door vandaag naar ze te kijken, dat wil zeggen na 15 miljard jaar evolutie. Met
deze evolutie moet rekening worden gehouden in scenario’s van de vorming van sterrenstel-
sels. De eindprodukten van deze scenario’s moeten er uit zien als hedendaagse sterrenstelsels.
Dit is te vergelijken met het reconstrueren van de verhaallijn van een drama waarvan alleen
de afloop bekend is! De eindige lichtsnelheid biedt een andere mogelijkheid om de geschiede-
nis van sterrenstelsels te ontrafelen. Het licht heeft een seconde nodig om van de Maan naar
de Aarde en acht minuten om van de Zon naar de Aarde te reizen. Met andere woorden: het
waargenomen beeld van de Zon is dat van acht minuten geleden. Voor sterrenstelsels die veel
verder weg staan kan deze vertraging oplopen tot enkele miljarden jaren. Ver weggelegen ster-
renstelsels worden dus nu waargenomen zoals ze er miljarden jaren geleden uitzagen, vlak na
hun ontstaan.

Sterrenkunde is een door waarnemingen gedreven wetenschap: theorieën en modellen wor-
den gebruikt om vragen te beantwoorden die door waarnemingen worden opgeroepen. Op
deze wijze wordt getracht om met behulp van alle waarnemingen één coherent beeld te vor-
men. In dit proefschrift wordt zo’n beeld van de ruimtelijke en snelheidsverdeling van sterren
in sterrenstelsels beschreven. Hierbij worden de waargenomen lichtverdeling van sterrenstel-
sels aan de hemel (zie bijvoorbeeld figuur 6.13) en de snelheden van sterren langs de gezichtslijn
gebruikt. Het is in het algemeen niet mogelijk individuele sterren in sterrenstelsels te zien. Een
waarneming geeft slechts de gemiddelde eigenschappen van alle sterren langs de gezichtslijn.
Het is dus niet mogelijk individuele snelheden van sterren te meten. Wel kan de snelheidsver-
deling langs de gezichtslijn, het zogenaamde snelheidsprofiel, worden bepalen. Het snelheids-
profiel geeft in principe weer hoeveel sterren er met welke snelheid bewegen.

Enkele van de grote vragen over sterrenstelsels zijn: hoe zijn ze onstaan, hoe zitten ze in
elkaar en hoe ontwikkelen ze zich in de toekomst? Een eerste stap in de zoektocht naar ant-
woorden op deze vragen is het construeren van dynamische modellen van deze fascinerende
objekten. Dit geeft een beschrijving van de posities en de bewegingen van de sterren in sterren-
stelsels. Om het model te vinden dat het best bij de waarnemingen past worden verschillende
modellen hiermee vergeleken.

Dynamische modellen

Sterrenstelsels zijn geen statische objekten: ze zijn opgebouwd uit miljarden sterren die allemaal
onder invloed van hun onderlinge zwaartekracht bewegen. Aangezien sterrenstelsels zeer oud
zijn, hebben de sterren voldoende tijd gehad om een stabiele evenwichtssituatie te bereiken. Dit
evenwicht wordt soms verstoord door een wisselwerking met een ander sterrenstelsel. Afhan-
kelijk van de sterkte van deze wisselwerking kunnen de sterrenstelsels in meer of mindere mate
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FIGUUR 6.13— In het linker paneel is het elliptische stelsel M32 afgebeeld. M32 is de begeleider van het grote
spiraalstelsel Andromeda (zie omslag) en wordt bestudeerd in hoofdstuk 4 van dit proefschrift. In het rechter paneel
zijn het spiraalstelsel M51 (ook wel de ‘draaikolknevel’ genaamd) en zijn begeleider NGC 5194 afgebeeld (onder).
De spiraalarmen van M51 zijn duidelijk zichtbaar.

van vorm veranderen. Soms kan de botsing van twee spiraalstelsels leiden tot de vorming van
een elliptisch sterrenstelsel. Kleine sterrenstelsels kunnen zelfs geheel opgeslokt worden door
grote sterrenstelsels. In dit proefschrift worden de effecten van wisselwerkende sterrenstelsels
echter genegeerd, en wordt een gedetailleerde beschrijving van enkele vroeg-type objekten ge-
geven. Hierbij worden dynamische modellen gebruikt met als doel de bewegingen van sterren
in deze sterrenstelsels te verklaren. Een dynamisch model is een wiskundige beschrijving van
een sterrenstelsel wat door de astrofysicus als een gereedschap gebruikt wordt. Zulke model-
len worden gebruikt omdat de praktische implementatie van Newton’s zwaartekrachtswet voor
honderden miljarden wisselwerkende sterren onmogelijk is. Gebaseerd op een paar individuele
objekten wordt geprobeerd de fundamentele wetten te vinden die het leven van sterrenstelsels
bepalen. In dit proefschrift wordt alleen aandacht besteed aan de bewegingen van sterren in
vroeg-type sterrenstelsels, en worden hun andere eigenschappen genegeerd: sterren worden
beschouwd als puntmassa’s en bewegen in banen die bepaald worden door de zwaartekracht
van alle aanwezige massa in het stelsel (voornamelijk de sterren en het gas).

Het construeren van een dynamisch model is gecompliceerder voor een elliptisch sterren-
stelsel dan voor een spiraalstelsel. In de schijven van spiraalstelsels bewegen sterren voorname-
lijk in (bijna) cirkelvormige banen. Daarentegen zijn de bewegingen van sterren in elliptische
stelsels niet zo eenvoudig, en kunnen de banen veel verschillende vormen hebben. Sommige
banen zijn zelfs chaotisch. Zonder voorkennis over de precieze vorm van sterbanen in ellip-
tische stelsels wordt een grote verzameling banen berekend. Hierna wordt bepaald hoeveel
sterren in elke baan bewegen, onder de voorwaarde dat het uiteindelijke model een goede weer-
gave geeft van het waargenomen stelsel, zowel wat betreft de vorm als de snelheidsprofielen.
Het uiteindelijke model stelt ons in staat de volledig drie-dimensionale snelheids- en positie-
verdeling te bestuderen. In dit proefschrift worden zulke baanmodellen gemaakt voor enkele
vroeg-type sterrenstelsels: NGC 2434 (hoofdstuk 2), M32 (hoofdstuk 4), NGC 4342 (hoofdstuk
5) en NGC 2320 (hoofdstuk 6).
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Donkere materie

De snelheid van een ster onder invloed van de zwaartekracht wordt bepaald door de totale
hoeveelheid aanwezige massa. Massa en snelheid zijn dus nauw verbonden: hoe groter de
massa, hoe groter de snelheid. De massa van een sterrenstelsel kan dus bepaald worden door
snelheden van sterren te meten. Een andere manier om de massa te bepalen is de waargenomen
hoeveelheid sterlicht om te zetten in massa (de omzettingsfactor van sterlicht naar stermassa is
immers bekend).

Voor spiraalstelsels geven deze twee methoden significant verschillende resultaten. De
waargenomen snelheden van sterren in de buitendelen van spiraalstelsels zijn te groot om en-
kel veroorzaakt te kunnen worden door de zichtbare massa. Deze is slechts tien procent van de
massa, die vereist is om de bewegingen te verklaren. Een substantieel deel van de totale massa
van spiraalstelsels is dus onzichtbaar. Deze niet-zichtbare massa wordt donkere materie genoemd.

In dit proefschrift worden twee vormen van donkere materie in vroeg-type sterrenstelsels
bestudeerd, namelijk zwarte gaten in de centrale delen en donkere halo’s in de buitendelen.

Zwarte gaten

Quasars zijn extreem heldere, ver weggelegen en dus jonge sterrenstelsels. Zij stralen veel meer
energie uit dan enkel op grond van hun sterren verwacht zou kunnen worden. De meest aan-
nemelijke verklaring voor dit overschot aan uitgezonden energie is de aanwezigheid van een
zwart gat in hun kern. Zulke zwarte gaten kunnen zo zwaar zijn als enkele honderden mil-
joenen zonsmassa’s. Zwarte gaten zijn objekten waarvan de zwaartekracht zo sterk is dat zelfs
licht niet kan ontsnappen. Invallende sterren en gas- en stofwolken worden opgeslokt door
het zwarte gat. Bij dit proces komt een enorme hoeveelheid energie vrij, wat een aannemelijke
verklaring vormt voor de waargenomen eigenschappen van quasars.

Het feit dat jonge sterrenstelsels zware zwarte gaten in hun kernen hebben, doet vermoe-
den dat ook in de hedendaagse, oude sterrenstelsels zwarte gaten aanwezig zijn, ook al stralen
deze stelsels bij lange na niet dezelfde hoeveelheid energie uit als quasars. Zoals hierboven
al besproken is, zijn de bewegingen van sterren gekoppeld aan massa. Zodoende voorspelt
de aanwezigheid van zware zwarte gaten in de kernen van sterrenstelsels hoge snelheden van
sterren in de nabijheid van het zwarte gat. Zulke hoge snelheden zijn inderdaad waargenomen
in de kernen van vele elliptische sterrenstelsels, wat ook hier de aanwezigheid van een zwarte
gat aannemelijk maakt.

In dit proefschrift worden de centrale delen van twee vroeg-type sterrenstelsels, M32 en
NGC 4342 (hoofdstuk 4 en 5), nauwkeurig bestudeerd met behulp van dynamische baanmo-
dellen. Modellen zonder een zwart gat zijn niet in staat om de waargenomen snelheden te
reproduceren: sterren in zulke modellen bewegen niet zo snel als geobserveerd. De aanwezig-
heid van een zwart gat in de kern van beide stelsels is de meest aannemelijke verklaring.

Donkere halo’s

Uit de beweging van sterren en gas in de buitendelen van spiraalstelsels kan worden afgeleid
dat er donkere materie in de vorm van een zware donkere halo aanwezig is (zie boven). In
tegenstelling tot spiraalstelsels is er bijna niets bekend over donkere halo’s van elliptische stel-
sels. Dit wordt gedeeltelijk veroorzaakt door een gebrek aan bruikbare objekten om snelheden
in de buitendelen van elliptische stelsels te meten: er zijn te weinig sterren en er is te weinig gas.
Bovendien kan de snelheidsstructuur die wordt veroorzaakt door een donkere halo evengoed
worden gegenereerd door de ingewikkelde baanstructuur van deze stelsels, zodat het moeilijk
is onderscheid te maken tussen deze twee oorzaken.
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Dynamische baanmodellen gecombineerd met nauwkeurig geanalyseerde kinematische
waarnemingen van het ronde elliptische sterrenstelsel NGC 2434 laten zien dat de zichtbare
massa onvoldoende is om de bewegingen van de sterren te verklaren (hoofdstuk 2). Het toe-
voegen van een donkere halo in de baanmodellen leidt tot resultaten die wel overeenkomen
met de waarnemingen. De donkere halo rond NGC 2434 is zwaarder dan de typische donkere
halo van een spiraalstelsel. Voor het afgeplatte elliptische stelsel NGC 2320 wordt een soort-
gelijk analyse uitgevoerd, waarbij naast de bewegingen van de sterren ook de snelheden van
het aanwezige gas worden gebruikt (hoofdstuk 6). Ook dit stelsel heeft een donkere halo; de
beweging van de sterren is voornamelijk in de radiële richting.
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English Summary

THIS thesis concerns the study of early–type (elliptical and lenticular) galaxies through de-
tailed dynamical modeling. The models are based on the idea that a galaxy is a dynamical

object that can be better understood as a collection of orbits rather than a collection of stars. In
this thesis, we exploit this idea and construct dynamical models for a few early–type galaxies:
we compute numerically a large set of orbits and adjust the number of stars on each of them
so as to match a set of observed properties (light distribution and velocities). The final ’orbit–
model’ is aimed to be as close as possible to the observed galaxy. The advantage of this approach
(and its primary motivation) is that no a priori simplifying assumptions are made concerning
the dynamical structure of the galaxy. This is crucial in the search for massive black holes (BHs)
in the center of galaxies, because a simplified model can give a wrong answer concerning the
existence of the BH.

In this thesis, such orbit–models (chapter 3) are used to interpret high quality ground–based
and Hubble Space Telescope observations. This data in combination with the models provide
compelling evidence for dark matter (see below). In particular, we study central dark mass con-
centrations in M32 and NGC 4342, for which BHs are the most likely explanations (chapters 4
and 5). In order to explain the observed velocities of NGC 2434, we show that this galaxy has
to be embedded in a massive dark halo that accounts for a substantial fraction of the total mass
(chapter 2). Finally, we focus on the internal dynamics of NGC 2320 and show that the motions
of the stars are predominantly radial (chapter 6).

Galaxies

Galaxies are huge collections of stars, gas, dust and planets. Large galaxies contain approxi-
mately one hundred billion (1011) stars. The quantity of gas and dust varies from a few percent
of the total stellar mass (for the lenticular galaxies), to ten percent for the most gas–rich objects
(for the spiral galaxies). Even if the total mass of planets is completely insignificant compared
to the stellar and gas mass, we humans consider these objects as quite important!

Galaxies can be classified in roughly three categories according to their apparent shape:
disk, elliptical (see Figure 6.14) and irregular. Each class is further subdivided according to the
appearance of the galaxy. Disk galaxies are very flat objects, sometimes with beautiful spiral
arms and a rounder central part, called the ’bulge’. The spiral arms can be more or less tightly
wound around the bulge, which in turn can have different sizes: these features allow a classi-
fication of the various types of spiral disk galaxies. Our own galaxy is a disk galaxy and it can
be recognized as the white band that crosses the sky. Since our Sun is located in the disk of our
galaxy, when we look through it, we see a lot more stars than looking perpendicular from it:
this explains the appearance of our galaxy at night and its name, the ’Milky Way’. The lentic-
ular galaxies are disks without spiral arms and with a large central bulge. Elliptical galaxies,
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also called ’early–type’ galaxies, have a rounder overall shape (roughly like an egg) and have
much less gas than the spirals. Their appearance is smoother, which led astronomers to think
that these objects are simpler, dynamically speaking. Finally, the last class (irregular) includes
all the other galaxies that could not be classified in the first two categories because of their
disturbed appearance.

Galaxies are believed to form early on in the history of the universe, approximately 15 billion
years ago. Astronomers try to understand how they have formed by looking at them today,
i.e., after �15 billions years of evolution. All this evolution has to be taken into account in
galaxy formation scenarios and the end–products of such scenarios should look like present
day galaxies. It is like trying to reconstruct the premises of the drama, knowing already the
end! There is another option to reveal the history of galaxies, i.e., to look at them in the past.
Because the speed of light is finite, when we look at objects we do not see them as they are now,
but as they were at the time when the light was emitted (or reflected) from the object. If the
distance between the object and the observer is large, the travel time of the light can be long.
For instance, it takes about one second for the light to travel the distance Moon–Earth, and eight
minutes for the distance Sun–Earth. In other words, we see the Sun as it was eight minutes ago.
If we look at very distant galaxies, we see them as they were a long time ago, in some cases,
billions of years ago.

Astronomy is an observational science: observations provide facts and trigger questions,
whereas theories and models try to answer these questions and put the facts into a coherent
picture. We can measure the intensity of stellar light of a galaxy, e.g., as a function of the distance
from the center, and the velocity of stars along the line–of–sight. The other components of the
velocity can not be measured, except for very nearby objects. Since individual stars can not be
resolved in external galaxies, one can not measure individual stellar velocities. In projection, the
light of many stars contributes to the same position on the galaxy image. Therefore, we do not
measure a single line–of–sight velocity vlos, but a distribution of velocities. In other words, from
the observations, we can reconstruct the number of stars that have a velocity vlos, and hence
build the whole distribution as a function of vlos. We call such a distribution ’Velocity Profile’
(hereafter VP).

We want to understand what these fascinating objects are, how they function, how they
were formed and into what they are evolving. Constructing dynamical models for galaxies is a
first step to understand how galaxies “work”: it gives a description of the position and motion
of the stars inside the galaxy. Different models can be compared with observations to select
which ones provide the best match to the data.

Dynamical models

Galaxies are not static objects: they are composed of billions of stars that move under their
mutual gravity. Since galaxies are very old, the stars in them had time to settle down and
reach an equilibrium situation. Sometimes this internal equilibrium can be disturbed by the
interaction with another galaxy. Depending on the strength of this interaction, the galaxy can
modify its shape more or less drastically. In extreme cases, a collision between two spirals can
lead to the formation of an elliptical. Small galaxies can even be cannibalized by bigger ones.
However in this work, we ignore the effect of interactions between galaxies and concentrate on
the detailed description of a few early–type objects. We construct dynamical models to explain the
internal motions of the stars in isolated galaxies. We rely on models, because a physical theory
describing the motion of hundred billion stars is out of reach: even though Newton’s law of
gravity is simple, a frightening complexity arises when many stars interact together through
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FIGURE 6.14— In the left panel, the elliptical galaxy M32 is shown. It is the companion of the large spiral galaxy
Andromeda (see the cover of this thesis) and the subject of investigation of chapter 4 of this thesis. On the right
panel, we see the spiral galaxy M51 (also called ’The whirlpool’) viewed from above and its companion, NGC 5194,
at the bottom. The spiral arms of M51 are clearly visible.

gravitational forces. A dynamical model is a mathematical description of a galaxy and as such,
provides a working tool for the astrophysicist.

From the study of individual objects, we wish to extract the fundamental laws that govern
the life of galaxies. Here we focus on the motion of stars inside early–type galaxies and neglect
their other properties: stars are considered as “point–masses” that follow orbits in the combined
gravitational field of all the mass of the galaxy (mostly the other stars and the gas).

Building a dynamical model for an elliptical galaxy is more complicated than for a spiral.
In spiral disks, stars travel mostly on circular (or nearly circular) orbits. By contrast, motion
in elliptical galaxies is not so simple, and orbits can have many different shapes (some orbits
can even be chaotic). Without the a priori knowledge of what the stellar orbits are in elliptical
galaxies, we compute a large variety of orbits (hopefully covering all types) and then solve for
their occupation, i.e., the number of stars traveling on each of them. This is done under the
condition that the model made out of orbits resembles the real galaxy, not only in shape, but
also in velocities. As kinematic constraints, we use the observed VPs at different points of the
galaxy. Once the model is complete, we can peer into it and extract the full velocity and position
of any star on any orbit. In this thesis, we constructed such orbit models for several early–type
galaxies: NGC 2434 (chapter 2), M32 (chapter 4), NGC 4342 (chapter 5) and NGC 2320 (chapter
6).

Dark Matter

The velocity of a star is due to the gravity field: mass produces gravitational forces that can
“pull” the star and change its velocity (a falling apple on Earth experiences the same phe-
nomenon). Hence mass and velocity are intimately related: the larger the mass, the higher the
velocity. We can measure velocities of stars and deduce the gravitational field (i.e., the amount
of mass) through the equations of motion. Alternatively, one can deduce the amount of mass by
measuring the stellar light and converting it into mass (since we know what is the conversion
factor between mass and luminosity for a typical stellar population).
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These two determinations of mass do not agree when applied, e.g., to the total mass of spiral
galaxies. The observed velocities in the outer parts of the galaxy are too high to be explained
only by the luminous mass. The discrepancy is very significant, since the “luminous” mass can
account for only ten percent of the “dynamical” mass. Therefore, in spiral galaxies, there is a
substantial fraction of the total mass that is not luminous, called dark matter.

Black Holes (BHs)

Quasars are extremely bright and very distant galaxies. As we explained previously, we see
these objects as they were in their “infancy”. They emit much more energy than what could
be expected from their stars only. The amount of energy released is so large that an “extreme”
explanation was needed to describe the early stages of the life of these so–called active galaxies.

BHs are objects that have such a strong gravitational field that nothing can escape from it,
not even a gleam of light. BHs at the center of galaxies can be very massive, e.g., as massive
as a hundred million Suns! Gas, stars and dust can be swallowed by the hole, releasing vast
amount of energy during the process: this is the only mechanism that can explain such large
energy generation. So if BHs are suspected in the center of active galaxies, what is the situation
for normal galaxies (i.e., the case for most galaxies today)? BHs can also reveal their presence
through the strong gravitational field they exert on the surrounding stars. As we have seen,
stars orbiting very near a super–massive BH will have a very high velocity. Such high velocities
are indeed observed in the center of many elliptical galaxies, so massive BHs were proposed as
plausible explanations.

In this thesis, we examine in detail the central regions of two early–type galaxies, M32 and
NGC 4342. We have constructed general dynamical models to interpret the observed velocities
of the stars. Models that do not include a massive BH are unable to explain the observations:
stars in such models do not travel as fast as observed. We conclude that for both galaxies, a
massive BH in the center is the most likely explanation.

Dark Halos (DHs)

We mentioned that the dynamical mass measurements do not agree with the luminous mass
estimation for spiral galaxies. In a dynamical model, one can increase the stellar velocities in the
outer regions by embedding the model galaxy into a halo of dark material. Since models based
on the light only (i.e., without dark matter) tend to underestimate the velocities at large radii,
dark halos (DHs) were postulated to exist around spiral galaxies to explain the large observed
velocities.

On the contrary, much less is known concerning the DHs of elliptical galaxies. This is partly
due to the more complex orbit families that populate these objects, and hence the greater dif-
ficulty to build a dynamical model. Another reason is that velocity measurements are hard to
perform in the (very faint) outer parts of elliptical galaxies.

Using extended kinematic measurements and general dynamical models, we studied the
round elliptical galaxy, NGC 2434 (chapter 2). The models based on the light only could not
explain simultaneously all the kinematic observations, indicating that some dark matter was
required. We built a grid of models to study the properties of the DH around that galaxy. We
find that the best fit is obtained with a very massive halo (heavier than the typical DH around a
spiral that would have the same total luminosity than NGC 2434).

In chapter 6, we carried out a similar study for the flattened galaxy NGC 2320 with the
axisymmetric code of chapter 3, and using not only the stellar kinematics but also that of the
gas.
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